工業(yè)鍋爐快裝式脫硫塔結(jié)構(gòu)設計與優(yōu)化
[Abstract]:With the development of productivity and the increase of energy consumption, sulfur dioxide produced by industrial boilers when burning coal will be mixed in flue gas. The formation of sulfur dioxide triggers Greenhouse Effect, acidification of water and soil, and a serious impact on plant and animal life. In order to reduce the adverse impact of sulfur dioxide on the environment, various countries began to study desulfurization technology, and gradually extended to the flue gas treatment system of large boilers. More than 95% of the boilers in our country are small and medium-sized industrial boilers, which have the characteristics of weak capital and technical strength, so it is difficult to bear the high cost of installation and operation of large-scale flue gas desulfurization system. Therefore, it is of great significance to design a fast-mounted desulfurizer for industrial boilers. By analyzing the commonly used flue gas desulfurization technology and comparing the advantages and disadvantages of various desulphurization processes, the wet flue gas desulfurization technology which can meet the needs of high emission is selected, and the most widely used limestone wet flue gas desulfurization technology is taken as an example. The factors influencing the desulfurization efficiency of the process were analyzed by using the double film theory and the ionization equation. In order to promote the gas-liquid mixed mass transfer process, the swirl atomization and injection technology, combined with the dual absorption mode of common spray, can increase the absorption efficiency and reduce the desulfurization liquid gas ratio at the same time. When the pH value of the slurry is about 5.4 and the supersaturation of gypsum in the slurry is between 120% and 130%, it can not only guarantee the absorption effect but also improve the gypsum quality. Taking the design of limestone wet flue gas desulfurization tower of an industrial boiler in Guangdong province as an example, according to the parameters of coal quality, boiler capacity, flue gas, absorbent and so on, the absorbent consumption and gypsum production amount of absorption system are calculated by using sulfur element balance. Design parameters such as circulating slurry volume, oxidizing air volume, etc. According to the calculated parameters, the absorber suitable for 75t/h boiler is designed, and the absorption system is optimized. The diameter of the slurry pool of the absorption tower is 5.0 m, the working level of the slurry tank is 6.1 m, the upper part of the absorption zone is designed with three layers of common spray layer with a staggered angle of 15 擄between the adjacent two layers, and the lower part of the absorption zone is designed with two layers of swirl atomization spray layer. The intersecting angle of the adjacent two layers is 45 擄. The swirl atomization spray layer is designed to have a tangential diameter of 1 700 mm and the height of the tangent circle lies below the center of the atomizer from 200mm to 500mm. In the test data of the retrofitting project of desulfurization tower of a power plant and an industrial boiler, the absorption efficiency of 2% to 4% can be improved by adding a new layer of swirl atomization layer below the three-layer common spray layer. Therefore, the design of two-layer swirl atomization spray layer and three-layer common spray layer absorption zone combination can meet the design requirements of 98.9% desulphurization efficiency. The SO2 emission can be reduced by more than 200 tons per year and the economic benefit of emission reduction is more than 300000 yuan by using the absorber to treat the flue gas.
【學位授予單位】:華南理工大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TK229
【參考文獻】
相關期刊論文 前10條
1 陳梅倩,何伯述;氨法脫除煙氣中氣態(tài)污染物的應用分析[J];北方交通大學學報;2003年04期
2 韓琪,李忠華;石灰石/石膏濕法煙氣脫硫的化學過程研究[J];電力環(huán)境保護;2002年01期
3 陳蓮芳,徐夕人;濕法煙氣脫硫系統(tǒng)pH值的控制指標[J];動力工程;2005年05期
4 杜謙;馬春元;董勇;吳少華;秦裕琨;;液氣比對石灰石-石膏濕法煙氣脫硫過程的影響[J];動力工程;2007年03期
5 郭瑞堂;高翔;丁紅蕾;駱仲泱;倪明江;岑可法;;濕法煙氣脫硫存在SO_3~(2-)時石灰石的活性研究[J];動力工程;2008年01期
6 張秀云;鄭繼成;;國內(nèi)外煙氣脫硫技術(shù)綜述[J];電站系統(tǒng)工程;2010年04期
7 張永照;燃煤鍋爐脫硫技術(shù)綜述[J];工業(yè)鍋爐;2003年03期
8 趙小勇,許軒,王睿,王茂鋼,王大群;煙氣脫硫技術(shù)進展[J];環(huán)境保護科學;2001年03期
9 汪波;煙氣脫硫技術(shù)的經(jīng)濟比較[J];環(huán)境保護;1997年10期
10 沈迪新,楊曉葵;中、日、美三國煙氣脫硫技術(shù)的發(fā)展和現(xiàn)狀[J];環(huán)境科學進展;1993年03期
相關博士學位論文 前4條
1 周志華;海水脫硫中吸收塔脫硫效率的研究[D];天津大學;2005年
2 張芝濤;大氣壓窄間隙DBD等離子體源與應用基礎研究[D];東北大學;2003年
3 林永明;大型石灰石—石膏濕法噴淋脫硫技術(shù)研究及工程應用[D];浙江大學;2006年
4 楊劍;濕法煙氣脫硫氧化過程動力學研究[D];重慶大學;2008年
相關碩士學位論文 前10條
1 袁波;35T/h鍋爐煙氣治理方案選擇與監(jiān)控系統(tǒng)改造[D];昆明理工大學;2010年
2 高建;噴霧干燥法煙氣脫硫技術(shù)研究[D];南京工業(yè)大學;2004年
3 張均剛;中小型燃煤鍋爐及工業(yè)爐窯煙氣除塵脫硫設備的研究[D];武漢理工大學;2004年
4 聶華;2×300MW火電機組脫硫工藝研究及設計[D];重慶大學;2004年
5 陳公衛(wèi);山東黃島電廠2×125MW機組煙氣脫硫技術(shù)方案設計[D];山東大學;2005年
6 張國興;燃煤電廠石灰石—石膏濕法煙氣脫硫影響因素的再研究[D];華北電力大學(河北);2006年
7 張新寧;2×300MW機組煙氣脫硫工程方案的設計研究[D];重慶大學;2006年
8 趙光玲;石灰石—石膏法二氧化硫吸收過程理論研究[D];東北大學;2008年
9 邱云龍;循環(huán)流化床煙氣脫硫技術(shù)[D];東北大學;2011年
10 鄭龍闊;旺隆熱電廠濕法煙氣脫硫技改研究[D];華南理工大學;2012年
,本文編號:2205727
本文鏈接:http://sikaile.net/kejilunwen/dongligc/2205727.html