帶擾流結(jié)構(gòu)的微通道流動(dòng)與傳熱數(shù)值研究
[Abstract]:In the past ten years, micro-electro-mechanical system technology and nano-technology have made unprecedented development. Human beings are moving from the macro-world of meter and centimeter to the micro-world of micron and nano. As an important branch of micro-electro-mechanical system technology, micro-fluid technology has also made great progress in recent years and has made great progress. Considerable progress has been made. In the new era, the miniaturization of electronic components is an inevitable trend. These micro-electronic components have changed the way of life of human beings and entered the "micro-era". The local heat flux density is getting higher and higher, and the main reason for the failure of these integrated components is that the working temperature is too high to operate accurately and effectively. With the rapid development of processing technology, electronic components are becoming smaller and smaller in size, lighter and lighter in weight, more powerful in function and higher in integration, which provides a good prerequisite for solving the problem of micro-scale heat transfer. Micro-scale science has gradually become the forefront of research in modern science and technology. Nowadays, heat transfer and heat dissipation in the field of micro-scale have become a problem to be solved urgently. Therefore, higher requirements have been put forward for heat dissipation technology. For this kind of high-integrated electronic components, micro-channel heat dissipation is the most ideal and effective way, and it is also an important development direction in the field of heat dissipation. The theoretical study of heat dissipation is carried out, and the model of microchannel with turbulent structure, the traditional long straight microchannel model and the corresponding research methods are established. Based on the traditional long straight microchannel, a simple obstruction is added, i.e. a turbulent structure. The mechanism of enhanced heat transfer in this microchannel with turbulent structure is to use the obstruction to make the fluid flow radially, thereby enhancing the mixing of the fluid in the microchannel and causing the fluid to become disturbed when flowing in the microchannel. The turbulent fluid can obtain higher convective heat transfer coefficient and enhance the heat transfer efficiency between the fluid and the microchannel wall. Then the influence of fin density on the heat transfer is studied. Four fins and six fins are set in the same length microchannel respectively. Then the influence of inlet velocity on heat transfer in microchannels is studied. Five different inlet velocities are set up to calculate the velocity field, temperature field and pressure field. Finally, the conclusion is drawn. The research method of this paper is to use ANYSY CFD ICEM software to establish the structure with turbulence. The two-dimensional models of microchannel and traditional long straight microchannel are imported into FLUENT software to pre-process the definitions of solid materials and fluid properties, and then SIMPLE algorithm is selected to calculate the fluid flow in microchannel under uniform heat flux load. Then, different inlet velocities are set to calculate and compare the temperature distribution nephogram, pressure field, velocity vector diagram, temperature distribution diagram at the heat source and temperature distribution diagram at the fluid-solid interface. When the velocity increases, the Reynolds number increases, and the pressure drop increases, that is, the conveying power of the fluid flow in the microchannel is increased. In a certain range, the effect of heat transfer can be enhanced by increasing the fluid velocity. (3) When the size of the microchannel is given, the heat transfer of the microchannel increases with the increase of Reynolds number; when the increase is to a certain extent, the heat transfer of the microchannel becomes stable gradually, that is, the effect of heat transfer remains unchanged.
【學(xué)位授予單位】:武漢工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TK124
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 苗輝;黃勇;陳海剛;;隨機(jī)粗糙微通道中的流動(dòng)和傳熱特性[J];北京航空航天大學(xué)學(xué)報(bào);2011年06期
2 相威;葉丁丁;廖強(qiáng);李俊;朱恂;;異形截面微通道內(nèi)氣液兩相流動(dòng)的實(shí)驗(yàn)研究[J];工程熱物理學(xué)報(bào);2013年06期
3 劉煥玲;賈建援;邵曉東;;圓形微通道的熱交換特性及其尺寸效應(yīng)[J];西安交通大學(xué)學(xué)報(bào);2007年11期
4 程婷;羅小兵;黃素逸;劉勝;;基于一種微通道散熱器的散熱實(shí)驗(yàn)研究[J];半導(dǎo)體光電;2007年06期
5 全曉軍;陳鋼;鄭平;;微通道氣液同向流動(dòng)中氣泡射流特性[J];工程熱物理學(xué)報(bào);2008年02期
6 王愛國(guó);馮妍卉;林林;張欣欣;;三角形粗糙元的微通道內(nèi)流動(dòng)換熱的模擬分析[J];熱科學(xué)與技術(shù);2008年01期
7 宋善鵬;于志家;劉興華;秦福濤;方薪暉;孫相_g;;超疏水表面微通道內(nèi)水的傳熱特性[J];化工學(xué)報(bào);2008年10期
8 李志剛;淮秀蘭;陶毓伽;王立;;二極管激光器陣列微通道冷卻實(shí)驗(yàn)研究[J];工程熱物理學(xué)報(bào);2009年05期
9 漆波;李隆鍵;王鋒;崔文智;;微通道尺寸對(duì)甲烷蒸汽重整性能的影響[J];太陽能學(xué)報(bào);2009年06期
10 劉凱輝;肖曉天;劉瑩;;平行板微通道內(nèi)壓力驅(qū)動(dòng)流的流動(dòng)機(jī)理[J];機(jī)械設(shè)計(jì)與研究;2010年05期
相關(guān)會(huì)議論文 前10條
1 史東山;李錦輝;劉趙淼;;關(guān)于微通道相關(guān)問題研究方法現(xiàn)狀分析[A];北京力學(xué)會(huì)第18屆學(xué)術(shù)年會(huì)論文集[C];2012年
2 逄燕;劉趙淼;;溫黏關(guān)系對(duì)微通道內(nèi)液體流動(dòng)和傳熱性能的影響[A];北京力學(xué)會(huì)第18屆學(xué)術(shù)年會(huì)論文集[C];2012年
3 范國(guó)軍;逄燕;劉趙淼;;微通道中液體流動(dòng)和傳熱特性的影響因素概述[A];北京力學(xué)會(huì)第18屆學(xué)術(shù)年會(huì)論文集[C];2012年
4 劉麗昆;逄燕;劉趙淼;;幾何參數(shù)對(duì)微通道液體流動(dòng)和傳熱性能影響的研究[A];北京力學(xué)會(huì)第18屆學(xué)術(shù)年會(huì)論文集[C];2012年
5 劉麗昆;劉趙淼;申峰;;幾何參數(shù)對(duì)微通道黏性耗散影響的研究[A];北京力學(xué)會(huì)第19屆學(xué)術(shù)年會(huì)論文集[C];2013年
6 肖鵬;申峰;劉趙淼;;微通道中矩形微凹槽內(nèi)流場(chǎng)的數(shù)值模擬[A];北京力學(xué)會(huì)第19屆學(xué)術(shù)年會(huì)論文集[C];2013年
7 肖鵬;申峰;劉趙淼;李易;;凹槽微通道流場(chǎng)的三維數(shù)值模擬[A];北京力學(xué)會(huì)第20屆學(xué)術(shù)年會(huì)論文集[C];2014年
8 周繼軍;劉睿;張政;廖文裕;佘漢佃;;微通道傳熱中的兩相間歇流[A];上海市制冷學(xué)會(huì)2011年學(xué)術(shù)年會(huì)論文集[C];2011年
9 夏國(guó)棟;柴磊;周明正;楊瑞波;;周期性變截面微通道內(nèi)液體流動(dòng)與傳熱的數(shù)值模擬研究[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
10 婁文忠;Herbert Reichel;;硅微通道致冷系統(tǒng)設(shè)計(jì)與仿真研究[A];科技、工程與經(jīng)濟(jì)社會(huì)協(xié)調(diào)發(fā)展——中國(guó)科協(xié)第五屆青年學(xué)術(shù)年會(huì)論文集[C];2004年
相關(guān)重要報(bào)紙文章 前2條
1 本報(bào)記者 陳杰;空調(diào)將進(jìn)入微通道時(shí)代[N];科技日?qǐng)?bào);2008年
2 張亮;美海軍成功為未來武器研制微型散熱器[N];科技日?qǐng)?bào);2005年
相關(guān)碩士學(xué)位論文 前10條
1 劉征;超疏水微通道傳遞特性的數(shù)值模擬[D];大連理工大學(xué);2010年
2 高曉玉;微通道光生物制氫反應(yīng)器內(nèi)微生物生長(zhǎng)及傳輸特性[D];重慶大學(xué);2010年
3 劉煥玲;微通道換熱研究[D];西安電子科技大學(xué);2004年
4 劉瑩瑩;網(wǎng)絡(luò)化微通道散熱器的設(shè)計(jì)仿真與溫度控制[D];西安電子科技大學(xué);2008年
5 劉秉言;微通道中流動(dòng)特性的大渦模擬[D];天津大學(xué);2007年
6 趙向陽;光學(xué)表面等離子共振生物傳感器的微通道系統(tǒng)研究及儀器設(shè)計(jì)[D];河南農(nóng)業(yè)大學(xué);2008年
7 逄燕;微通道內(nèi)液體流動(dòng)和換熱特性的數(shù)值模擬研究[D];北京工業(yè)大學(xué);2011年
8 葛浩;新型微通道熱沉的設(shè)計(jì)和數(shù)值研究[D];上海交通大學(xué);2007年
9 謝靈丹;微通道內(nèi)微細(xì)顆粒對(duì)氣液傳質(zhì)的影響研究[D];天津大學(xué);2010年
10 劉超;裝有縱向渦流產(chǎn)生器的矩形微通道內(nèi)的傳熱與流動(dòng)的實(shí)驗(yàn)和模擬研究[D];華中科技大學(xué);2011年
,本文編號(hào):2189807
本文鏈接:http://sikaile.net/kejilunwen/dongligc/2189807.html