多支管分液聯(lián)箱結(jié)構(gòu)優(yōu)化研究
[Abstract]:In this paper, the method of numerical simulation and the VOF model in Fluent are used to study the structure optimization of multi-branch tube separation header by studying the gas-liquid separation flowability of multi-branch tube separation header with working fluid R134a. The multi-branch tube separated liquid header is the key component of the condenser to achieve high efficiency heat transfer. Its main function is to realize gas-liquid separation and discharge of condensate liquid among the tubes of the heat exchanger. The working principle is to utilize the gas-liquid two-phase density difference. The liquid phase is deposited on the porous separator, and the liquid phase is expelled into the next tube through the holes distributed in the porous partition. At the same time, the vapor blocking liquid film is formed on the upper part of the partition, so that the gas phase is discharged from the outlet branch tube into the downstream heat transfer pipe. High dryness heat transfer is formed to improve the overall heat transfer performance of the condenser. As one of the key components, the separated liquid header is not only effective to drain liquid, but also effective to prevent steam, both of which need to be realized automatically through structural design. In this paper, the typical operating conditions of heat exchangers are studied. Firstly, the characteristics of gas-liquid separation flow in the multi-branch tube separation header under the experimental header structure are studied. The distribution characteristics of the two-phase working fluid and the dry degree of the branch pipe at the outlet of the header are studied. The characteristics of pressure distribution and fluctuation in the container and the uniformity of the flow distribution of the outlet branch pipe and the separation hole of the header are analyzed, and the influence of the pore diameter of the separate liquid hole on the performance parameters of the header is studied. Finally, the influence of groove depth on the performance parameters of liquid header was studied when the header wall was slotted. The simulation results show that the pore diameter mainly affects the discharge flow of the header, and the slotted wall mainly affects the deposition of liquid film at the bottom of the header. The efflux flow increases with the increase of pore size, and the slotted wall can increase the deposition of liquid film at the bottom of the header. Under given working conditions, the variation of aperture and groove depth has little effect on the pressure distribution in the box. Under given conditions, the gas phase flow distribution uniformity of outlet branch tubes will not change obviously because of the change of pore diameter, but the uniformity of liquid phase flow distribution will become better with the increase of pore size, and the uniformity is the best when the pore diameter is 0.4mm. When the flow reaches a stable level, the fluctuation range of the gas phase flow relative to the mean value of each outlet branch pipe remains constant with the increase of the pore size. The fluctuation range of the relative average liquid flow rate of each outlet branch pipe decreases slightly or remains unchanged with the increase of pore diameter, and the gas phase and flow distribution uniformity of each pore becomes worse with the increase of pore diameter under given operating conditions. When the flow reaches stability, the fluctuation amplitude of the relative average gas phase flow rate decreases with the increase of pore size, while the fluctuation amplitude of the relative average flow rate of liquid phase decreases slightly with the increase of pore size. For the slotted header structure, the gas phase flow distribution uniformity of the outlet branch tube remains basically unchanged with the change of the groove depth under given working conditions, but the uniformity of the liquid phase flow distribution will become worse with the increase of the groove depth. When the tank depth is too small, the liquid film is easily stripped from the header wall by the gas phase, and the tank depth is too large. The liquid film at the bottom of the tank is easily impacted by the air flow at the top of the tank to form dispersed droplets. When the channel depth is 0.2mm, the continuity of the deposition liquid film at the bottom of the header is the best, and when the channel depth increases, the relative average flow rate of each outlet branch pipe increases.
【學(xué)位授予單位】:廣東工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TK172
【相似文獻】
相關(guān)期刊論文 前10條
1 周威振;斜聯(lián)箱臌包的原因和預(yù)防[J];勞動保護;1978年04期
2 宋漢武;軸向引進和引出的蒸汽過熱器聯(lián)箱中的壓力和流動工況[J];鍋爐技術(shù);1973年04期
3 石磊;鍋爐聯(lián)箱內(nèi)表面檢查裝置的開發(fā)[J];發(fā)電設(shè)備;1992年02期
4 林浩毅,周志芳,趙文凱,張躍;楊柳青發(fā)電廠1號爐集汽聯(lián)箱裂紋原因分析[J];華北電力技術(shù);1997年08期
5 陳忠兵;鄭黎峰;沈季雄;遲鳴聲;高和利;雷恒海;;一起因停用積水導(dǎo)致的鍋爐聯(lián)箱點腐蝕[J];金屬熱處理;2011年S1期
6 ;“土車床”加工鍋爐聯(lián)箱[J];鍋爐技術(shù);1971年14期
7 倪寧,胡德明,徐宜桂;鍋爐汽水聯(lián)箱疲勞壽命預(yù)測和安全評定[J];動力工程;1994年05期
8 劉紅權(quán),韓宏才,解紅梅,歐陽杰,馮硯廳;集汽聯(lián)箱裂紋的分析及處理[J];河北電力技術(shù);2003年02期
9 王洪,劉建敏;一起鍋爐聯(lián)箱裂縫的形成條件探討[J];鍋爐制造;2003年04期
10 張雁;;P—91號鋼解決了過熱器出口聯(lián)箱的裂縫問題[J];寧夏電力;1994年02期
相關(guān)會議論文 前3條
1 陳忠兵;鄭黎峰;沈季雄;遲鳴聲;高和利;雷恒海;;一起因停用積水導(dǎo)致的鍋爐聯(lián)箱點腐蝕[A];2011年全國失效分析學(xué)術(shù)會議論文集[C];2011年
2 李合興;;華德電廠300MW鍋爐再熱器出口聯(lián)箱根部堵管泄漏原因和處理方法[A];全國火電大機組(300MW級)競賽第37屆年會論文集[C];2008年
3 馮硯廳;代小號;徐雪霞;吳楠;張猛;;鴛鴦湖電廠低再出口聯(lián)箱管座裂紋原因分析[A];全國冶金自動化信息網(wǎng)2014年會論文集[C];2014年
相關(guān)重要報紙文章 前2條
1 全運;銅制散熱器[N];中國有色金屬報;2002年
2 ;銅制散熱器[N];中國有色金屬報;2004年
相關(guān)碩士學(xué)位論文 前5條
1 樂文璞;多支管分液聯(lián)箱結(jié)構(gòu)優(yōu)化研究[D];廣東工業(yè)大學(xué);2015年
2 賀林博;600MW超臨界鍋爐高溫過熱器出口聯(lián)箱壽命分析[D];華北電力大學(xué);2011年
3 李冬屹;超臨界調(diào)峰運行鍋爐過熱器出口聯(lián)箱應(yīng)力分析及數(shù)值模擬[D];華北電力大學(xué);2013年
4 呂玉賢;聯(lián)箱流量分配和氣液兩相流分離的數(shù)值模擬[D];華北電力大學(xué);2014年
5 高劍峰;典型工況下中國實驗快堆柵板聯(lián)箱流體力學(xué)分析[D];中國原子能科學(xué)研究院;2005年
,本文編號:2140048
本文鏈接:http://sikaile.net/kejilunwen/dongligc/2140048.html