缸內(nèi)直噴點(diǎn)燃式甲醇發(fā)動機(jī)非常規(guī)排放仿真研究
本文選題:缸內(nèi)直噴 + 甲醇發(fā)動機(jī) ; 參考:《吉林大學(xué)》2015年碩士論文
【摘要】:隨著能源危機(jī)和環(huán)境危機(jī)日益加劇,尋求一種清潔的可替代燃料迫在眉睫。經(jīng)過多年的探索,人們開始將目光轉(zhuǎn)向了甲醇。甲醇,化學(xué)分子式為CH3OH,具有和汽油、柴油媲美的儲存運(yùn)輸和應(yīng)用方面的優(yōu)勢,同時(shí)在常規(guī)排放性能方面比傳統(tǒng)燃料更優(yōu),所以甲醇被公認(rèn)為是21世紀(jì)最具發(fā)展?jié)摿Φ拇萌剂。除了以上種種優(yōu)勢,甲醇燃料的應(yīng)用也面臨不少問題亟待解決,,特別是甲醇燃料帶來的非常規(guī)排放問題,嚴(yán)重制約了甲醇燃料的大規(guī)模應(yīng)用。 本文以一臺經(jīng)柴油機(jī)改裝的缸內(nèi)直噴點(diǎn)燃式甲醇發(fā)動機(jī)為原型,通過三維建模軟件Pro/E對模型進(jìn)行精簡優(yōu)化并將模型以*.stl格式導(dǎo)出,采用AVL-FIRE軟件對模型進(jìn)行前處理,使用AVL-FIRE軟件耦合甲醇詳細(xì)氧化機(jī)理進(jìn)行模擬計(jì)算,用仿真計(jì)算得到的缸壓曲線與實(shí)驗(yàn)所測的缸壓曲線進(jìn)行對比驗(yàn)證以確保仿真計(jì)算的準(zhǔn)確性。通過模擬計(jì)算研究進(jìn)氣溫度(過量空氣系數(shù))、點(diǎn)火正時(shí)、噴油正時(shí)對冷啟動和穩(wěn)態(tài)工況非常規(guī)排放影響,得到以下結(jié)論: 一、冷啟動工況: 1.提高進(jìn)氣溫度能促進(jìn)甲醇霧化及蒸發(fā),改善缸內(nèi)混合氣分布,提高缸內(nèi)混合氣燃燒質(zhì)量,有效降低未燃甲醇和甲醛排放;當(dāng)進(jìn)氣溫度從283K提高到313K未燃甲醇和甲醛的排放能夠得到極大改善;當(dāng)進(jìn)氣溫度達(dá)到313K繼續(xù)提高進(jìn)氣溫度對降低未燃甲醇和甲醛的排放效果不明顯。 2.推遲點(diǎn)火正時(shí),缸內(nèi)混合氣分布惡化,燃燒惡化,未燃甲醇和甲醛排放升高;當(dāng)點(diǎn)正時(shí)由20°CA BTDC推遲到11°CA BTDC未燃甲醇和甲醛排放增加不明顯;當(dāng)點(diǎn)火正時(shí)由11°CA BTDC推遲到8°CABTDC時(shí)未燃甲醇和甲醛排放會急劇增加。 3.推遲噴油正時(shí),缸內(nèi)混合氣分布得到優(yōu)化,燃燒更加充分,有效降低未燃甲醇和甲醛排放;當(dāng)噴油正時(shí)為57°CA BTDC時(shí)未燃甲醇和甲醛排放最高,隨著噴油正時(shí)推遲未燃甲醇和甲醛排放呈遞減趨勢;但是當(dāng)噴油正時(shí)為49°CA BTDC時(shí)由于缸內(nèi)燃燒溫度維持在1000K左右會促進(jìn)未燃甲醇不完全氧化成甲醛使得甲醛排放達(dá)到峰值,當(dāng)噴油正時(shí)進(jìn)一步推遲甲醛排放明顯下降。 二、穩(wěn)態(tài)工況: 1.增大過量空氣系數(shù),不利于混合氣形成,燃燒惡化,未燃甲醇和甲醛排放增加;當(dāng)過量空氣系數(shù)由λ=1.5增加到λ=2.5未燃甲醇甲醛排放增加不明顯;當(dāng)過量空氣系數(shù)增加到λ=3.0未燃甲醇和甲醛排放急劇增加。 2.推遲點(diǎn)火正時(shí),缸內(nèi)混合氣分布惡化,燃燒惡化,未燃甲醇和甲醛排放增加;當(dāng)點(diǎn)火正時(shí)由20°CA BTDC推遲到11°CA BTDC未燃甲醇和甲醛排放有輕微增加;當(dāng)點(diǎn)火正時(shí)推遲到8°CABTDC未燃甲醇和甲醛排放急劇增加。 3.推遲噴油正時(shí),能有效改善缸內(nèi)混合氣分布,燃燒質(zhì)量提高,未燃甲醇和甲醛排放顯著降低;當(dāng)噴油正時(shí)為57°CA BTDC時(shí)未燃甲醇和甲醛排放十分高;當(dāng)噴油正時(shí)推遲到53°CA BTDC未燃甲醇和甲醛排放有顯著降低;當(dāng)噴油正時(shí)進(jìn)一步推遲未燃甲醇和甲醛排放降輕微降低。
[Abstract]:With the increasing of energy crisis and environmental crisis , it is urgent to seek a clean alternative fuel . After many years of exploration , people have begun to turn their attention to methanol . Methanol and chemical molecular formula CH3OH have the advantages of storage transportation and application as well as gasoline and diesel oil . At the same time , methanol is recognized as a substitute fuel with the most development potential in the 21st century . In addition to the above advantages , the application of methanol fuel has many problems to be solved , especially the problem of unconventional discharge caused by methanol fuel , which seriously restricts the large - scale application of methanol fuel .
In this paper , a diesel engine modified in - cylinder direct injection ignition methanol engine is used as a prototype , and the model is optimized by three - dimensional modeling software Pro / E and the model is derived in the form of * . stl . The simulation calculation is carried out on the model by using the software Pro / E . The cylinder pressure curve obtained by the simulation is compared with the cylinder pressure curve measured by the experiment to ensure the accuracy of the simulation calculation .
I . Cold start working condition :
1 , increasing the intake air temperature , promoting methanol atomization and evaporation , improving the distribution of the in - cylinder mixture , improving the combustion quality of the in - cylinder mixture , and effectively reducing unburned methanol and formaldehyde emission ;
When the inlet temperature is increased from 283K to 313K , the discharge of unburned methanol and formaldehyde can be greatly improved ;
When the intake air temperature reaches 313K , the effect of increasing the intake air temperature on reducing unburned methanol and formaldehyde is not obvious .
2 . When the ignition timing is retarded , the distribution of the in - cylinder mixture deteriorates , the combustion deteriorates , the unburned methanol and the formaldehyde emission increase ;
When the ignition timing was retarded from 20 擄 CA BTDC to 11 擄 CA BTDC unburned methanol and formaldehyde emission increased obviously ;
Unburned methanol and formaldehyde emissions increase sharply when the ignition timing is retarded from 11 擄 CA BTDC to 8 擄 CABTDC .
3 . When the fuel injection timing is delayed , the distribution of the in - cylinder mixture is optimized , the combustion is more fully , the unburned methanol and formaldehyde emission are effectively reduced ;
When the fuel injection timing was 57 擄 CA BTDC , unburned methanol and formaldehyde were the highest , and the emission of unburned methanol and formaldehyde was decreased with the fuel injection timing .
However , when the fuel injection timing is 49 擄 CA BTDC , the combustion temperature in the cylinder is maintained around 1000K to promote the incomplete oxidation of unburned methanol to formaldehyde so that the formaldehyde emission reaches the peak value , and the emission of formaldehyde is further delayed when the injection timing is positive .
II . Steady - state operating conditions :
1 . Increasing the excess air coefficient is not conducive to the formation of the mixed gas , the combustion deteriorates , the unburned methanol and the formaldehyde emission increase ;
When the excess air coefficient increases from 位 = 1.5 to 位 = 2.5 , the formaldehyde emission of unburned methanol is not obvious ;
When the excess air factor increases to 位 = 3.0 unburned methanol and formaldehyde emissions sharply increase .
2 . When the ignition timing is retarded , the distribution of the in - cylinder mixture deteriorates , combustion deteriorates , unburned methanol and formaldehyde emission increase ;
When the ignition timing was retarded from 20 擄 CA BTDC to 11 擄 CA BTDC unburned methanol and formaldehyde emissions slightly increased ;
When the ignition timing was retarded to 8 擄 CABTDC unburned methanol and formaldehyde emissions sharply increased .
3 . When the fuel injection timing is delayed , the in - cylinder mixed gas distribution can be effectively improved , the combustion quality is improved , the unburned methanol and the formaldehyde emission are obviously reduced ;
Unburned methanol and formaldehyde emissions were very high when the fuel injection timing was 57 擄 CA BTDC ;
When the injection timing was retarded to 53 擄 CA BTDC unburned methanol and formaldehyde emission decreased significantly ;
A slight decrease in unburned methanol and formaldehyde emissions was further delayed when the injection timing was positive .
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TK401
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 索文超;韓樹;張晶;;CFD技術(shù)在內(nèi)燃機(jī)設(shè)計(jì)中的應(yīng)用[J];車輛與動力技術(shù);2006年01期
2 楊敏;室內(nèi)空氣環(huán)境中甲醛的危害及分析方法[J];湖北預(yù)防醫(yī)學(xué)雜志;2003年02期
3 李圣勇;李圣濤;;甲醇汽油的腐蝕性和溶脹性研究[J];化學(xué)工業(yè)與工程技術(shù);2007年06期
4 張輝;李君;王立軍;賈瓊;吳潔;宮寶利;;甲醇汽油發(fā)動機(jī)甲醛排放的測量與分析[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2008年01期
5 宮長明;鄧寶清;王舒;于曉璐;高青;劉巽俊;;預(yù)熱對電控噴射甲醇發(fā)動機(jī)冷起動著火特性的影響[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2008年05期
6 宮長明;王舒;劉家郡;鄧寶清;高青;劉巽俊;;環(huán)境溫度對點(diǎn)燃式甲醇發(fā)動機(jī)冷起動性能的影響[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2009年01期
7 王躍;蔡繼業(yè);;發(fā)動機(jī)研發(fā)過程當(dāng)中CFD軟件的應(yīng)用[J];農(nóng)機(jī)化研究;2006年01期
8 張凡;王真;帥石金;王建昕;;低比例甲醇汽油發(fā)動機(jī)冷起動非常規(guī)排放和燃燒特性研究[J];內(nèi)燃機(jī)工程;2011年01期
9 呂勝春;李暉;Eddy;祁東輝;劉圣華;;甲醇/汽油混合燃料發(fā)動機(jī)非常規(guī)排放成分測量方法研究[J];內(nèi)燃機(jī)學(xué)報(bào);2006年01期
10 汪洋;王靜;史春濤;王雪雁;范國梁;;甲醇發(fā)動機(jī)排放特性的研究[J];內(nèi)燃機(jī)學(xué)報(bào);2007年01期
相關(guān)博士學(xué)位論文 前1條
1 張凡;甲醇汽油混合燃料發(fā)動機(jī)燃燒與排放特性研究[D];清華大學(xué);2010年
本文編號:2102481
本文鏈接:http://sikaile.net/kejilunwen/dongligc/2102481.html