面向抗干擾性的HCCI發(fā)動(dòng)機(jī)點(diǎn)火正時(shí)控制策略研究
本文選題:點(diǎn)火正時(shí) + 抗干擾性 ; 參考:《重慶郵電大學(xué)》2016年碩士論文
【摘要】:在能源和污染問(wèn)題日益嚴(yán)重的今天,HCCI(Homogeneous Charge Compression Ignition,均質(zhì)充氣壓縮燃燒)發(fā)動(dòng)機(jī)由于具有高效和低排放的特性而備受歡迎。HCCI發(fā)動(dòng)機(jī)的正常運(yùn)行需要有效的點(diǎn)火正時(shí)控制作為基礎(chǔ)?紤]到發(fā)動(dòng)機(jī)存在多種形式的外部干擾和內(nèi)部參數(shù)擾動(dòng),其點(diǎn)火正時(shí)控制策略應(yīng)具備良好的抗干擾性。然而,由于未充分考慮干擾的影響,或由于算法的限制,現(xiàn)有的控制策略均不能有效抑制內(nèi)外部干擾的影響,其抗干擾能力仍有待提升。因此,本文將圍繞控制策略的抗干擾性,對(duì)HCCI發(fā)動(dòng)機(jī)的點(diǎn)火正時(shí)控制展開(kāi)研究。論文主要工作包括:1.HCCI發(fā)動(dòng)機(jī)模型建立為了方便控制策略的設(shè)計(jì),首先,選取進(jìn)氣門(mén)開(kāi)啟時(shí)刻和排氣門(mén)關(guān)閉時(shí)刻的曲軸轉(zhuǎn)角為模型輸入變量,點(diǎn)火正時(shí)為輸出變量,進(jìn)氣門(mén)關(guān)閉時(shí)刻的混合氣溫度為狀態(tài)變量,在充分考慮殘余廢氣對(duì)點(diǎn)火正時(shí)的影響,而且在保證精度的同時(shí)確保較小的計(jì)算量的前提下,通過(guò)分析缸內(nèi)的化學(xué)動(dòng)力學(xué),建立了HCCI發(fā)動(dòng)機(jī)的狀態(tài)空間模型。2.基于BP神經(jīng)網(wǎng)絡(luò)的點(diǎn)火正時(shí)PI控制策略研究針對(duì)傳統(tǒng)固定參數(shù)的PI(Proportion Integration)控制器無(wú)法有效抑制外部干擾的問(wèn)題,研究了基于BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)的點(diǎn)火正時(shí)PI控制策略。以期望點(diǎn)火正時(shí)和實(shí)際點(diǎn)火正時(shí)信號(hào)之間的誤差為輸入,以進(jìn)氣門(mén)開(kāi)啟時(shí)刻曲軸轉(zhuǎn)角的增量為輸出,設(shè)計(jì)了點(diǎn)火正時(shí)PI控制器。為了使PI控制器的參數(shù)適應(yīng)實(shí)時(shí)的運(yùn)行情況,以期望點(diǎn)火正時(shí)、實(shí)際點(diǎn)火正時(shí)以及兩者之間的誤差為輸入,以PI控制器的參數(shù)為輸出,建立了BP神經(jīng)網(wǎng)絡(luò),對(duì)點(diǎn)火正時(shí)PI控制器的參數(shù)進(jìn)行整定。仿真結(jié)果顯示:在跟蹤發(fā)生階躍變化的點(diǎn)火正時(shí)信號(hào)時(shí),基于BP神經(jīng)網(wǎng)絡(luò)的點(diǎn)火正時(shí)PI控制策略具有比傳統(tǒng)PI控制器更快速平穩(wěn)的瞬態(tài)響應(yīng)過(guò)程,并且穩(wěn)態(tài)誤差為零,顯示出良好的跟蹤性能。在出現(xiàn)多種形式的外部干擾后,相比固定參數(shù)的PI控制器,基于BP神經(jīng)網(wǎng)絡(luò)的PI控制策略能夠?qū)⑵x期望值的點(diǎn)火正時(shí)更加快速平滑地調(diào)節(jié)至期望值,顯示出更強(qiáng)的抗干擾能力。3.基于干擾觀測(cè)器的點(diǎn)火正時(shí)前饋控制策略研究針對(duì)2中所提策略瞬態(tài)響應(yīng)速度稍顯緩慢,以及抗干擾性能有待提升的問(wèn)題,研究了基于干擾觀測(cè)器的點(diǎn)火正時(shí)前饋控制策略。為了提高點(diǎn)火正時(shí)控制的瞬態(tài)響應(yīng)速度,以發(fā)動(dòng)機(jī)的實(shí)測(cè)狀態(tài)值和期望狀態(tài)值為輸入,以進(jìn)氣門(mén)開(kāi)啟時(shí)刻的曲軸轉(zhuǎn)角為輸出,設(shè)計(jì)了前饋控制器以控制點(diǎn)火正時(shí)。為了更好地抑制內(nèi)部參數(shù)擾動(dòng)和外部干擾,該策略將內(nèi)外部干擾統(tǒng)一視為復(fù)合干擾,設(shè)計(jì)干擾觀測(cè)器對(duì)該復(fù)合干擾進(jìn)行觀測(cè),并在前饋控制律中加入復(fù)合干擾的觀測(cè)值以抵消復(fù)合干擾的影響。仿真結(jié)果表示:在跟蹤發(fā)生階躍變化的點(diǎn)火正時(shí)信號(hào)時(shí),基于干擾觀測(cè)器的前饋控制器在一個(gè)循環(huán)之內(nèi)即可跟蹤到期望值,證明了其瞬態(tài)響應(yīng)速度較2中策略有顯著提升。當(dāng)出現(xiàn)由內(nèi)部參數(shù)擾動(dòng)和外部干擾組成的復(fù)合干擾時(shí),基于干擾觀測(cè)器的點(diǎn)火正時(shí)前饋控制策略能夠?qū)Ⅻc(diǎn)火正時(shí)控制在期望值的一個(gè)更小的鄰域內(nèi),證明了其具備比2中所提策略更強(qiáng)的抵抗內(nèi)外部干擾的能力。
[Abstract]:Today, with the increasingly serious energy and pollution problems, the HCCI (Homogeneous Charge Compression Ignition, homogeneous inflatable compression combustion) engine has been popular for the high efficiency and low emission characteristics, and the normal operation of.HCCI engine needs effective timing control as the basis. Interference and internal parameter disturbance, the control strategy of point fire should have good anti-interference. However, because of the lack of consideration of the influence of interference, or due to the limitation of the algorithm, the existing control strategy can not effectively suppress the influence of internal and external interference, and its anti-interference ability still needs to be improved. Therefore, this paper will revolve around the anti dry of control strategy. The main work of this paper is as follows: the main work of this paper is that the 1.HCCI engine model is built for the design of the control strategy. First, the crankshaft rotation angle of the inlet valve opening time and the exhaust valve closing time is selected as the model input variable, the ignition timing is the output variable and the intake gate closes the mixture gas. When the temperature is the state variable, the effect of the residual gas on the ignition timing is fully taken into account, and on the premise of ensuring the accuracy while ensuring the small amount of calculation while analyzing the chemical dynamics in the cylinder, the state space model of the HCCI engine,.2. based on the BP neural network, is set up for the traditional fixed time PI control strategy. The parameter PI (Proportion Integration) controller can not effectively suppress the external interference. The ignition timing PI control strategy based on the BP (Back Propagation) neural network is studied. The error between the desired ignition timing and the actual ignition timing signal is input, and the increment of the crankshaft angle increment at the opening time of the intake gate is designed. In order to make the parameters of the ignition timing PI controller, in order to make the parameters of the PI controller adapt to the real time operation, in order to expect the ignition timing, the actual ignition timing and the error between the two are input, the BP neural network is set up with the parameters of the PI controller as the output, and the parameters of the PI controller are set in the ignition timing. The simulation results show that the tracking occurs When the step change ignition timing signal is changed, the ignition timing PI control strategy based on BP neural network has a faster and stable transient response process than the traditional PI controller, and the steady-state error is zero, showing good tracking performance. After various forms of external interference, compared with the fixed parameter PI controller, the BP neural network is based on the BP neural network. The PI control strategy can adjust the departure time from the expected value more quickly and smoothly to the expected value, and show a stronger anti-interference ability,.3. based on the interference observer, the ignition timing feedforward control strategy studies the problem that the transient response speed of the strategy proposed in 2 is slightly slower and the anti-interference performance needs to be improved. In order to improve the transient response speed of ignition timing control, a feedforward controller is designed to control the ignition timing in order to improve the internal parameter disturbance in order to improve the transient response speed of the ignition timing control, in order to improve the transient response speed of the ignition timing control, the measured state value and the expected state value of the engine are input, and the crankshaft angle of the inlet valve opening moment is the output. And external interference, the strategy considers the internal and external interference as a compound interference. The interference observer is designed to observe the complex interference, and the observation value of the compound interference is added to the feedforward control law to counteract the influence of the compound interference. The feedforward controller can track the expiration value in a cycle. It is proved that the transient response speed is significantly higher than that in the two strategy. When there is a complex interference consisting of internal and external disturbances, the ignition timing feedforward control strategy based on the disturbance observer can control the ignition timing to a more desired value. Within small neighborhood, it is proved that it has stronger ability to resist internal and external interference than the strategy mentioned in 2.
【學(xué)位授予單位】:重慶郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TK411
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 崔玉國(guó);朱耀祥;馬劍強(qiáng);方凡;;壓電微動(dòng)平臺(tái)的定位控制[J];振動(dòng)與沖擊;2015年17期
2 國(guó)凱;魏建華;田啟巖;;Disturbance observer based position tracking of electro-hydraulic actuator[J];Journal of Central South University;2015年06期
3 汪先兵;費(fèi)樹(shù)岷;徐清揚(yáng);金敏毅;薛涵;趙鶴;;BP神經(jīng)網(wǎng)絡(luò)PID控制的永磁真空開(kāi)關(guān)儲(chǔ)能電容恒流充電特性分析[J];電工技術(shù)學(xué)報(bào);2015年10期
4 XIE Danmei;CHEN Chang;XIONG Yangheng;GAO Shang;WANG Chun;;BP neural network based online prediction of steam turbine exhaust dryness[J];熱力發(fā)電;2014年09期
5 陳萬(wàn)華;王元興;沈星;聶旭濤;黎壯聲;;壓電疊堆主動(dòng)減振的神經(jīng)網(wǎng)絡(luò)PID實(shí)時(shí)控制[J];南京航空航天大學(xué)學(xué)報(bào);2014年04期
6 方一鳴;李葉紅;石勝利;李建雄;;液壓伺服位置系統(tǒng)的神經(jīng)網(wǎng)絡(luò)backstepping控制[J];電機(jī)與控制學(xué)報(bào);2014年06期
7 謝東;張興;曹仁賢;;基于小波變換與神經(jīng)網(wǎng)絡(luò)的孤島檢測(cè)技術(shù)[J];中國(guó)電機(jī)工程學(xué)報(bào);2014年04期
8 Sheng-Gang Zhou;Li-Da Sun;Pei-Xian Zhu;Jin Zhang;Zhe Zhang;;Application of BP Neural Network in Prediction of Cu-Pb Composite Plates Properties[J];Journal of Harbin Institute of Technology;2013年05期
9 林軍;倪宏;孫鵬;張輝;;一種采用神經(jīng)網(wǎng)絡(luò)PID控制的自適應(yīng)資源分配方法[J];西安交通大學(xué)學(xué)報(bào);2013年04期
10 ;VIBRATION SUPPRESSION OF A FLEXIBLE PIEZOELECTRIC BEAM USING BP NEURAL NETWORK CONTROLLER[J];Acta Mechanica Solida Sinica;2012年04期
,本文編號(hào):1999535
本文鏈接:http://sikaile.net/kejilunwen/dongligc/1999535.html