自然循環(huán)鍋爐蒸發(fā)區(qū)的建模與動態(tài)仿真
本文選題:自然循環(huán)鍋爐 + 動態(tài)仿真。 參考:《大連理工大學(xué)》2016年碩士論文
【摘要】:為了滿足用戶所需負荷的要求,機組調(diào)峰、給煤量等操作是無法避免的。然而,在運行操作時電廠人員都是依據(jù)實時的動態(tài)參數(shù)與以往的經(jīng)驗來調(diào)節(jié)并沒有優(yōu)化的運行方式與目標值,這種運行工況的突變最終會直接影響鍋爐蒸發(fā)區(qū)內(nèi)部參數(shù)的動態(tài)特性,其工作條件的惡劣還會產(chǎn)生如結(jié)渣、爆管等安全隱患,從而改變其經(jīng)濟性與安全性,故加強鍋爐運行管理及調(diào)節(jié)運行的優(yōu)化是很有必要的。本文以實際機組CG-220/9.81-M為原型,依據(jù)實際工況條件建立小負荷擾動時蒸發(fā)系統(tǒng)模型,該模型基于能量與質(zhì)量的動態(tài)平衡并充分考慮蒸發(fā)區(qū)中熱慣性及汽機側(cè)擾動影響,通過利用SIMULINK模塊化思想建立其完整的蒸發(fā)區(qū)一汽機側(cè)的在線計算仿真平臺。該仿真平臺可在線預(yù)測不同工況鍋爐機組小負荷擾動下蒸發(fā)區(qū)內(nèi)水冷壁有效吸熱量、汽包出口蒸汽流量、汽包水位及主蒸汽流量并能夠優(yōu)化調(diào)節(jié)運行操作或進行離線的仿真分析。首先針對汽包出口蒸汽流量及汽包水位發(fā)生小擾動的本質(zhì)原因進行分析,仿真結(jié)果表明:蒸發(fā)區(qū)有效金屬及飽和水的熱慣性是影響蒸發(fā)區(qū)熱慣性的主要原因。在小負荷擾動情況下水冷壁有效吸熱量直接決定了汽包出口蒸汽流量,其受到給水溫度、汽包壓力、熱慣性及壓變速度的影響。而汽包總水位變化與壓力、質(zhì)量、汽泡引起的水位變化有關(guān)。其次,為鍋爐在調(diào)節(jié)運行的優(yōu)化和提高鍋爐的運行安全性可提供技術(shù)支持,其仿真結(jié)果表明:燃料量增加10%時前40s內(nèi)應(yīng)控制蒸發(fā)區(qū)初始壓變速度在0.01MPa/s以內(nèi);減少燃料量10%前40s內(nèi)應(yīng)控制蒸發(fā)區(qū)初始壓變速度在-0.01MPa/s以內(nèi)。燃料量進行優(yōu)化調(diào)節(jié)后,即初始壓變速度在-0.01MPa/s以內(nèi)時,其燃料量應(yīng)控制在-5%以內(nèi);初始壓變速度在0.01MPa/s以內(nèi)時,其燃料量應(yīng)控制在5%以內(nèi)。汽機調(diào)門開度增加1%前20s內(nèi)應(yīng)控制蒸發(fā)區(qū)初始壓變速度在-0.005MPa/s以內(nèi),在汽機調(diào)門開度減小1%前20s內(nèi)應(yīng)控制蒸發(fā)區(qū)初始壓變速度在0.005MPa/s以內(nèi)。汽機調(diào)門開度進行優(yōu)化調(diào)節(jié)后,即初始壓變速度在-0.005MPa/s以內(nèi)時,其汽機調(diào)門開度應(yīng)控制在0.32%以內(nèi);初始壓變速度在0.005MPa/s以內(nèi)時,其汽機調(diào)門開度應(yīng)控制在-0.32%以內(nèi)。給水流量增大10%前20s內(nèi)應(yīng)控制蒸發(fā)區(qū)初始壓變速度在-0.008MPa/s以內(nèi),給水流量減小10%前20s內(nèi)應(yīng)控制蒸發(fā)區(qū)初始壓變速度在0.008MPa/s以內(nèi)。給水?dāng)_動量進行優(yōu)化調(diào)節(jié)后,即初始壓變速度在-0.008MPa/s以內(nèi)時,其給水流量變化應(yīng)控制在5%以內(nèi);初始壓變速度在0.008MPa/s以內(nèi)時,其給水流量變化應(yīng)控制在-5%以內(nèi)。
[Abstract]:In order to meet the requirements of the load required by the user, the operation of unit peak regulation and coal supply can not be avoided. However, in operation, the power plant personnel are adjusted according to the real time dynamic parameters and previous experience, and there is no optimized operation mode and target value. The sudden change of the operation condition will directly affect the boiler evaporation area. It is necessary to strengthen the operation management of the boiler and the optimization of the regulating operation of the boiler, so it is necessary to strengthen the operation management and regulation of the boiler. This paper takes the actual unit CG-220/9.81-M as the prototype, and establishes the evaporation system in small load disturbance according to the actual working conditions. The model, based on the dynamic balance of energy and mass and fully considering the thermal inertia in the evaporation region and the influence of the turbine side disturbance, is used to establish an on-line calculation simulation platform for the whole evaporating area of one steam engine side by using the idea of SIMULINK modularization. The simulation platform can predict the evaporation area under the small load disturbance of different boiler units in different working conditions. The internal water cold wall effectively absorbs heat, the steam flow rate of the drum outlet, the water level of the drum and the main steam flow, and can optimize the operation operation or carry out the off-line simulation analysis. Firstly, the essential reasons for the steam flow rate and the small disturbance of the drum water level are analyzed. The simulation results show that the effective metal and saturated water in the evaporation region are shown. Thermal inertia is the main factor affecting the thermal inertia of the evaporation zone. The effective heat absorption of the water wall under the small load disturbance directly determines the steam flow rate of the drum outlet, which is influenced by the water supply temperature, the pressure of the drum, the thermal inertia and the pressure change speed. The boiler can provide technical support for the optimization of regulating operation and improving the operation safety of the boiler. The simulation results show that the initial pressure change speed of the evaporation zone should be less than 0.01MPa/s in the pre 40s 40s when the fuel amount is increased, and the initial pressure of the evaporation region should be within -0.01MPa/s under the reduction of 10% fuel quantity in 40s. The fuel quantity is superior. The fuel quantity should be controlled within -5% when the initial pressure change speed is within -0.01MPa/s, and the fuel quantity should be controlled within 5% when the initial pressure change speed is within 0.01MPa/s. The initial pressure change speed of the evaporation zone should be within -0.005MPa /s and the opening degree of the turbine is reduced to 1% before the turbine opening degree and the opening degree of the turbine is less than 1% before the opening degree of the turbine and the opening degree of the turbine is reduced to 1% before the 20s internal stress. The initial pressure change speed of the evaporation zone is within 0.005MPa/s. When the opening degree of the turbine is optimized, the opening degree of the turbine should be less than 0.32% when the initial pressure change speed is within -0.005MPa/s. When the initial pressure change speed is within 0.005MPa/s, the opening degree of the turbine should be within -0.32%. The water flow rate increases by 10% 20s. The initial pressure change speed of the evaporation region should be within -0.008MPa/s, and the initial pressure change speed of the evaporation region should be within 0.008MPa/s under the decrease of water flow rate 10% before 20s. When the water supply disturbance is optimized and adjusted, that is, when the initial pressure change speed is within the -0.008MPa/s, the change of the water supply flow should be controlled within 5%; the initial pressure change speed is in the 0.008M. Within Pa/s, the variation of feed water flow should be controlled within -5%.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TK221
【參考文獻】
相關(guān)期刊論文 前10條
1 劉福國;何傳懷;;自然循環(huán)汽包爐蒸發(fā)回路穩(wěn)態(tài)數(shù)學(xué)模型[J];中國電機工程學(xué)報;2014年32期
2 杜飛;周國義;;階躍式供汽增壓鍋爐蒸發(fā)系統(tǒng)建模及動態(tài)仿真[J];鍋爐制造;2014年02期
3 賈洪彬;;電站鍋爐節(jié)能技術(shù)措施分析[J];科技創(chuàng)新導(dǎo)報;2014年02期
4 康英偉;薛陽;黃偉;;電站鍋爐過熱器的集總參數(shù)動態(tài)建模與仿真[J];計算機仿真;2012年09期
5 姜志偉;周懷春;羅自學(xué);;循環(huán)流化床鍋爐吸熱量在線預(yù)測模型[J];華中科技大學(xué)學(xué)報(自然科學(xué)版);2011年10期
6 陳武;李云峰;;新時期我國能源安全戰(zhàn)略的思考[J];能源技術(shù)經(jīng)濟;2011年03期
7 郭廣躍;袁景淇;袁嘉婧;黃莉莉;;自然循環(huán)鍋爐汽水系統(tǒng)動態(tài)模型的建立[J];控制工程;2010年S2期
8 向賢兵;向上;;360MW機組汽包壓力及水位仿真模型研究[J];熱力發(fā)電;2009年10期
9 田亮;劉鑫屏;劉吉臻;;汽包鍋爐負荷-壓力-水位簡化非線性動態(tài)模型[J];動力工程;2009年10期
10 岑煒;李濤永;孔子華;;Matlab/Simulink環(huán)境下鍋爐模塊封裝子系統(tǒng)設(shè)計[J];儀器儀表與分析監(jiān)測;2009年01期
相關(guān)博士學(xué)位論文 前2條
1 馬進;基于遺傳算法和神經(jīng)網(wǎng)絡(luò)的鍋爐汽水系統(tǒng)模型參數(shù)優(yōu)化[D];華北電力大學(xué)(河北);2009年
2 初云濤;基于燃燒檢測的電站鍋爐分布參數(shù)建模與仿真研究[D];華中科技大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 徐瑋;電廠制粉系統(tǒng)防爆與控制的研究[D];浙江大學(xué);2014年
2 黨自力;基于Matlab/Simulink的鍋爐建模及其動態(tài)特性研究[D];華北電力大學(xué);2014年
3 嵇婷;自然循環(huán)鍋爐汽水系統(tǒng)模擬與參數(shù)估計[D];浙江大學(xué);2013年
4 程艷波;燃煤鍋爐仿真培訓(xùn)系統(tǒng)仿真模型研究[D];華東理工大學(xué);2013年
5 閆飛朝;鍋爐蓄熱系數(shù)計算方法研究[D];華北電力大學(xué);2013年
6 戚龍周;600MW超臨界直流鍋爐熱力性能建模與仿真研究[D];華中科技大學(xué);2012年
7 徐星;電站鍋爐系統(tǒng)熱力性能建模及其在優(yōu)化配煤中的應(yīng)用[D];華中科技大學(xué);2009年
8 向賢兵;360MW機組汽包水位仿真控制模型改進與研究[D];華北電力大學(xué)(河北);2009年
9 王曉妹;基于Matlab/Simulink大型火電機組建模與仿真研究[D];華北電力大學(xué)(河北);2007年
10 王建平;1006t/h亞臨界鍋爐仿真[D];重慶大學(xué);2006年
,本文編號:1951928
本文鏈接:http://sikaile.net/kejilunwen/dongligc/1951928.html