天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 動(dòng)力論文 >

平板熱管用于散熱冷卻強(qiáng)化傳熱試驗(yàn)研究

發(fā)布時(shí)間:2018-05-11 09:23

  本文選題:平板熱管 + 泡沫金屬。 參考:《江蘇科技大學(xué)》2016年碩士論文


【摘要】:本文在本課題組前期工作的基礎(chǔ)上,對(duì)平板熱管的結(jié)構(gòu)進(jìn)行改進(jìn),為了提高熱管的冷卻效果,使用了一體化的翅片管作為平板熱管的冷凝端,選擇質(zhì)量濃度為0.5%的氧化鋁納米流體作為傳熱工質(zhì),選用泡沫銅作為吸液芯,搭建試驗(yàn)臺(tái)架并設(shè)計(jì)試驗(yàn)方案對(duì)系列平板式熱管進(jìn)行傳熱特性試驗(yàn),研究了不同制備方法泡沫銅吸液芯和孔隙率、連通孔、充液率、納米流體基液、熱源分布、傾角和冷卻方式對(duì)平板熱管的傳熱性能影響,并與本課題組前期平板熱管的傳熱性能進(jìn)行了對(duì)比。在前期平板熱管的基礎(chǔ)上研究了納米顆粒沉積對(duì)平板熱管傳熱性能的影響。本文試驗(yàn)結(jié)果如下:1)泡沫銅吸液芯孔隙率對(duì)納米流體平板熱管傳熱性能有明顯的影響。其對(duì)平板熱管傳熱性能因泡沫銅吸液芯制備方法引起的孔隙微觀結(jié)構(gòu)特點(diǎn)和表面特征而差異較大。試驗(yàn)范圍Qg,電化學(xué)法泡沫銅吸液芯平板熱管傳熱性能隨孔隙率提高而降低,而粉末復(fù)合法泡沫銅吸液芯平板熱管的傳熱性能隨孔隙率提高而升高。與電化學(xué)法制得的泡沫銅吸液芯相比,粉末復(fù)合法制得的泡沫銅吸液芯具有更高的毛細(xì)抽吸力,粗糙度更大,理論上作為熱管吸液芯具有更好的傳熱性能。但是過(guò)大的表面粗糙度產(chǎn)生過(guò)密的氣泡反而會(huì)發(fā)生阻塞效應(yīng),表現(xiàn)為電化學(xué)沉積法制得泡沫銅吸液芯熱管具有更好的傳熱性能。2)平板熱管的連通孔不但能改善熱管蒸發(fā)端的均溫性,而且能減小熱管熱阻,提高熱管的傳熱性能。3)在相同的條件下,本文的平板熱管與本課題組前期的平板熱管相比,最大傳輸功率提高了15%以上,具有更小的傳熱熱阻。4)充液率過(guò)低或過(guò)高都會(huì)降低平板熱管的傳熱性能,與42%和62%充液率相比,本文的最佳充液率為50%。5)與乙醇基和丙酮基納米流體相比,水由于具有更高的汽化潛熱和和更大的表面張力,水基納米流體泡沫銅平板熱管具有更小的換熱熱阻。6)相較于部分中間和部分側(cè)面,在全部中間的加熱方式下平板熱管具有更小的傳熱熱阻。在部分中間和部分側(cè)面的負(fù)荷分布下,熱源位置的改變只會(huì)改變熱管蒸發(fā)端壁溫最高點(diǎn)的位置,對(duì)熱管的整體傳熱性能沒(méi)有太大的影響。7)試驗(yàn)結(jié)果表明,隨著熱管軸向傾角的增加,熱管的傳熱性能降低。在小角度范圍內(nèi),熱管熱阻增加比較緩慢,當(dāng)角度增加到一定程度時(shí),傳熱性能迅速惡化,熱阻急劇升高。8)在相同的條件下,冷卻風(fēng)速的增加能在一定程度上提高熱管的傳熱性能。隨著風(fēng)速的增加,熱管熱阻降低,當(dāng)風(fēng)速增加到一定程度,熱管熱阻變化很小。9)經(jīng)過(guò)一段時(shí)間放置的平板熱管由于納米顆粒的沉積不但使得熱管的均溫性變差,而且會(huì)降低熱管的傳熱特性,隨著加熱功率的升高,一部分納米顆粒懸浮起來(lái),而使得這種減弱變得緩和。
[Abstract]:Based on the previous work of our group, the structure of flat heat pipe is improved. In order to improve the cooling effect of heat pipe, the integrated finned tube is used as the condensing end of flat heat pipe. The aluminum oxide nano-fluid with 0.5% mass concentration was selected as the heat transfer medium, and the foam copper was used as the liquid absorbing core. The test bench was built and the test scheme was designed to test the heat transfer characteristics of a series of flat heat pipes. The effects of different preparation methods on the heat transfer performance of flat plate heat pipe were studied, such as absorption core and porosity of copper foam, connected pores, liquid filling rate, nano-fluid based solution, heat source distribution, dip angle and cooling method. The heat transfer performance of flat heat pipe was compared with that of our group. The effect of nano-particle deposition on the heat transfer performance of flat heat pipe was studied on the basis of the previous flat heat pipe. The results are as follows: (1) the porosity of copper foam absorbent core has a significant effect on the heat transfer performance of nanofluid flat heat pipe. The heat transfer performance of flat heat pipe varies greatly due to the pore microstructure and surface characteristics caused by the preparation method of copper foam absorbent core. In the range of Qg, the heat transfer performance of copper foam absorbent flat heat pipe decreases with the increase of porosity, while the heat transfer performance of powder composite copper absorbent flat heat pipe increases with the increase of porosity. Compared with the copper foam absorbent core prepared by electrochemical method, the foam copper absorbent core prepared by powder composite method has higher capillary suction force and greater roughness, so it has better heat transfer performance as a heat pipe absorbent core in theory. But if the surface roughness is too big, too many bubbles will be blocked. The results show that the heat pipe with copper foam absorbent core obtained by electrochemical deposition method has better heat transfer performance. 2) the connected holes of the flat heat pipe can not only improve the uniformity of temperature at the evaporating end of the heat pipe, but also reduce the thermal resistance of the heat pipe. Under the same conditions, the maximum transmission power of the flat heat pipe in this paper is increased by more than 15% compared with the previous flat heat pipe of our group. The heat transfer performance of flat heat pipe is reduced when the liquid filling rate is too low or too high with smaller heat transfer resistance. Compared with 42% and 62% liquid filling rate, the optimum liquid filling rate in this paper is 50. 5) compared with ethanol-based and acetone based nano-fluids. Due to higher latent heat of vaporization and greater surface tension, water nanofluid foam copper flat heat pipe has a smaller heat transfer resistance. In all the intermediate heating modes, the flat heat pipe has a smaller heat transfer resistance. Under the load distribution of part middle and part side, the change of heat source position will only change the position of the highest point of wall temperature at the evaporative end of heat pipe, and have no great influence on the heat transfer performance of heat pipe. With the increase of the axial inclination of heat pipe, the heat transfer performance of heat pipe decreases. In a small angle range, the heat pipe thermal resistance increases slowly. When the angle increases to a certain extent, the heat transfer performance rapidly deteriorates, and the thermal resistance increases sharply. 8) under the same conditions, The increase of cooling wind speed can improve the heat transfer performance of heat pipe to some extent. With the increase of wind speed, the heat pipe thermal resistance decreases. When the wind speed increases to a certain extent, the heat pipe thermal resistance change is very small. Moreover, the heat transfer characteristics of the heat pipe will be reduced. With the increase of heating power, a part of the nanoparticles are suspended, which makes the weakening become more moderate.
【學(xué)位授予單位】:江蘇科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TK172.4

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張春林 ,潘仁良 ,張孟瑞;平板熱管承受重力和慣性力時(shí)的性能[J];航空電子技術(shù);1992年02期

2 張亞平;余小玲;周恩民;馮全科;;新型徑向平板熱管傳熱性能的實(shí)驗(yàn)研究[J];西安交通大學(xué)學(xué)報(bào);2007年07期

3 張明;劉中良;馬國(guó)遠(yuǎn);;新型槽道式平板熱管的實(shí)驗(yàn)研究[J];工程熱物理學(xué)報(bào);2008年05期

4 張明;劉中良;;磁流體平板熱管熱性能的實(shí)驗(yàn)研究[J];工程熱物理學(xué)報(bào);2009年05期

5 郝麗敏;趙耀華;刁彥華;全貞花;;基于平板熱管的大功率LED照明散熱研究[J];工程熱物理學(xué)報(bào);2010年09期

6 李嘉琪;刁彥華;趙耀華;;新型平板熱管蓄熱裝置固—液相變過(guò)程數(shù)值模擬[J];建筑科學(xué);2011年10期

7 王晨;劉中良;張廣孟;張明;徐嘉爽;;傾斜角度對(duì)平板熱管性能影響的實(shí)驗(yàn)研究[J];工程熱物理學(xué)報(bào);2012年08期

8 紀(jì)獻(xiàn)兵;徐進(jìn)良;薛強(qiáng);;適用于大功率光電芯片散熱的一體化平板熱管[J];光電子.激光;2012年09期

9 劉桂蘭;陳雪芳;范寧;張祥林;;一體化陶瓷平板熱管的自由成型與傳熱性能研究[J];電子器件;2012年06期

10 紀(jì)獻(xiàn)兵;徐進(jìn)良;Abanda Aime Marthial;薛強(qiáng);;超輕多孔泡沫金屬平板熱管的傳熱性能研究[J];中國(guó)電機(jī)工程學(xué)報(bào);2013年02期

相關(guān)會(huì)議論文 前2條

1 全貞花;李寧軍;趙耀華;唐瀟;;基于平板熱管的太陽(yáng)能光伏光熱系統(tǒng)實(shí)驗(yàn)研究[A];全國(guó)暖通空調(diào)制冷2010年學(xué)術(shù)年會(huì)論文集[C];2010年

2 胡幼明;王惠齡;;平板熱管中金屬網(wǎng)格填料表面的沸騰傳熱的實(shí)驗(yàn)研究[A];第四屆全國(guó)低溫工程學(xué)術(shù)會(huì)議論文集[C];1999年

相關(guān)博士學(xué)位論文 前1條

1 寇志海;蒸發(fā)薄液膜及新型微槽平板熱管傳熱性能的研究[D];大連理工大學(xué);2011年

相關(guān)碩士學(xué)位論文 前10條

1 方璐;微型平板熱管傳熱性能的研究[D];電子科技大學(xué);2015年

2 程川;雙面微矩形槽道平板熱管設(shè)計(jì)與傳熱分析[D];電子科技大學(xué);2015年

3 黃炯桐;大功率LED平板熱管散熱系統(tǒng)的性能研究[D];廣東工業(yè)大學(xué);2016年

4 雷林;平板熱管用于散熱冷卻強(qiáng)化傳熱試驗(yàn)研究[D];江蘇科技大學(xué);2016年

5 李時(shí)娟;新型平板熱管的傳熱性能研究[D];中國(guó)科學(xué)院研究生院(工程熱物理研究所);2009年

6 夏潤(rùn)生;平板熱管綜合性能測(cè)試系統(tǒng)及其評(píng)估[D];華南理工大學(xué);2011年

7 董西江;用于電子設(shè)備的平板熱管散熱器設(shè)計(jì)與性能研究[D];重慶大學(xué);2015年

8 蔣朝勇;新型微型平板熱管的傳熱性能實(shí)驗(yàn)研究[D];長(zhǎng)沙理工大學(xué);2009年

9 陳金建;基于平板型熱管的LED散熱技術(shù)研究[D];華南理工大學(xué);2011年

10 辛欣;硅微型多槽道平板熱管研究[D];哈爾濱工業(yè)大學(xué);2007年



本文編號(hào):1873373

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dongligc/1873373.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶36b6d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com