濾清器外殼拉深工藝的計算機輔助分析及工藝改進
本文選題:濾清器 + 計算機模擬; 參考:《廣西大學》2016年碩士論文
【摘要】:濾清器外殼是由厚度僅為0.8mm鋼板經(jīng)多次拉深成形而成,拉深變形程度大,外殼內(nèi)直徑為φ107mmm,外殼總高度為320mmm,長徑比高達3,這對濾清器外殼的拉深成形存在著極大的挑戰(zhàn)。一次成形由于長徑比大極易拉裂,雖然多道次的拉深工藝在一定程度上改善了拉裂現(xiàn)象,但是由于每道次之間的模具內(nèi)徑不同,會導致材料在法蘭附近堆積起皺,進而使得外殼各處的壁厚分布不一,且容易生產(chǎn)殘余應力,在高強度、高頻率、長時間的循環(huán)脈沖應力作用下外殼容易生產(chǎn)局部疲勞最終導致開裂。為此,本文的主要研究工作如下:(1)針對目前長壽命機油濾清器外殼零部件無法滿足高強度、高脈沖次數(shù)的脈沖疲勞試驗要求,對脈沖疲勞試驗開裂有缺陷的外殼零部件開裂面取樣進行化學成分分析和電鏡分析并采用計算機輔助工程(CAE)有限元法對工件原有成形過程進行數(shù)值模擬,分析結(jié)果表明:斷口處的化學成分符合標準要求,斷口形貌有明顯的疲勞裂紋特征,呈現(xiàn)海灘花樣,原拉深工藝存在嚴重減薄與起皺等缺陷。因此,不合理的拉深工藝是導致外殼無法達到脈沖疲勞試驗要求的主要原因。(2)鑒于濾清器壁薄與長徑比大等特點,擬采用外殼圓片料落料一第一次拉深一第二次拉伸一第三次拉深一第四次拉深(反拉深)一切邊整形的工藝路線,通過重新計算設計各道工序的拉深工藝,并將初始設計方案進行計算機有限元分析,根據(jù)模擬的結(jié)果有目的地對各道工序的拉深系數(shù),凸凹模具間隙,凸凹模圓角,壓邊力等參數(shù)進行優(yōu)化。優(yōu)化后的具體參數(shù)為:圓形毛坯直徑為387mm,第一次拉深工件直徑為220mm,第二次拉深直徑170mm,第三次拉深直徑135mm,第四次拉深直徑109.8mm;四道拉深工序凹模圓角依次分別為R9, R7, R4, R4;四道拉深工序壓邊力依次分別為197KN,31KN,18KN,11KN;優(yōu)化后的模具在各道次拉深過程中均沒有出現(xiàn)拉裂現(xiàn)象,工件成形較好。最終外殼拉深件殼體厚度最薄處出現(xiàn)在筒形件圓角及直壁部位,材料變薄至0.652mm,最大變薄率僅為18.5%;輕微起皺現(xiàn)象只發(fā)生在拉深件的法蘭圓角處,材料最厚處的厚度為0.893mm,增厚率達11.6%。(3)為了充分驗證優(yōu)化后的模具結(jié)構(gòu)與工藝參數(shù)的合理性,先后對各道次的拉深模具進行了重新制作并進行外殼件生產(chǎn),還對優(yōu)化拉深工藝所制作出來的工件進行脈沖疲勞試驗。結(jié)果表明:優(yōu)化拉深工藝所制作出來的工件順利通過了濾清器的脈沖疲勞試驗,基于三維板料成形軟件DYNAFORM所優(yōu)化后的模具結(jié)構(gòu)與工藝參數(shù)是合理的,各道次的拉深模具關鍵零部件的結(jié)構(gòu)設計、材料的選擇、表面處理方式及模具使用保養(yǎng)均是恰當?shù)摹?br/>[Abstract]:The filter shell is formed by the thickness only of 0.8mm steel plate through deep drawing, the deep drawing deformation degree is large, the inner diameter of the shell is 107mmm, the total height of the shell is 320mmm, the length diameter ratio is up to 3, which has great challenge to the deep forming of the filter shell. To a certain extent, the cracking phenomenon has been improved to a certain extent, but due to the different inner diameter of each die, the material will accumulate in the vicinity of the flange, and then the thickness of the wall is distributed differently and the residual stress is easily produced. It is easy to produce local fatigue under the action of high intensity, high frequency and long time cyclic pulse stress. The main research work of this paper is as follows: (1) the chemical composition analysis and electron microscope analysis of the crack surface sampling of the shell parts with defects in the pulse fatigue test are carried out according to the requirements of the high pulse fatigue test which is unable to meet the high strength and high pulse times of the long life oil filter shell parts. The finite element method of Computer Aided Engineering (CAE) is used to simulate the original forming process of the workpiece. The analysis results show that the chemical composition of the fracture is in accordance with the standard requirements, the fracture morphology has obvious fatigue crack characteristics, the appearance of the beach is presented, the original drawing process has serious defects such as thinning and wrinkling. Therefore, the unreasonable drawing process is the guide. The main reason why the shell is unable to meet the requirements of the pulse fatigue test. (2) in view of the characteristics of the thin wall of the filter and the large ratio of length to diameter, it is proposed that the drawing of the first time drawing, a first drawing, a second drawing, a third drawing, a deep drawing, and a deep drawing (reverse drawing), is used to design the drawing of each process by recalculating. The initial design scheme is analyzed by computer finite element method. According to the simulation results, the drawing coefficient, the gap of the die and the die, the corner of the die and the die and the pressing force are optimized. The parameters of the optimization are as follows: the diameter of the circular blank is 387mm, the first drawing workpiece is 220mm, and the second secondary drawing is drawn. Deep diameter 170mm, third deep drawing diameter 135mm, fourth drawing diameter 109.8mm; four deep drawing process concave die round angle are respectively R9, R7, R4, R4; four way drawing process is respectively 197KN, 31KN, 18KN, 11KN; the optimized mold in the various channels deep over Cheng Zhongjun did not appear crack phenomenon, the workpiece is better formed. The final outside forming. The final out of shape. The thinnest shell of the shell of the shell appears in the corner of the cylindrical part and the straight wall, and the material thinning to 0.652mm, the maximum thinning rate is only 18.5%. The slight wrinkling occurs only at the flange circle of the drawing parts, the thickness of the material is 0.893mm, the thickening rate is 11.6%. (3), which is fully verified the optimized die structure and technological parameters. It is reasonable that the drawing dies are reproduced and the shell parts are produced successively. The pulse fatigue test of the workpiece made by the optimized drawing process is also carried out. The results show that the workpiece made by the optimized drawing process has passed the pulse fatigue test of the filter successfully, based on the three-dimensional sheet forming software DYNA. The structure and process parameters of FORM are reasonable. The structure design of the key parts of the drawing die, the selection of material, the surface treatment and the maintenance of the mould are all appropriate.
【學位授予單位】:廣西大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TK423
【相似文獻】
相關期刊論文 前10條
1 王艷輝;階梯圓筒形件的拉深工藝研究[J];機械工藝師;2000年01期
2 王鵬程,吳向東,朱寶泉,何璞禎,劉惠敏;內(nèi)側(cè)減薄拉深工藝力的切塊法分析[J];內(nèi)蒙古工業(yè)大學學報(自然科學版);2001年01期
3 王鵬程,吳向東,朱寶泉,何璞禎,劉惠敏;內(nèi)側(cè)減薄拉深工藝的切塊法分析[J];山西機械;2001年02期
4 陳志英;;鈦合金冷拉深工藝初探[J];航空精密制造技術;2008年01期
5 楊和利;;汽車發(fā)電機殼拉深工藝的創(chuàng)新[J];鍛壓技術;2012年04期
6 侯志勇;;關于球形件的拉深工藝[J];機車車輛工藝;1982年04期
7 康達昌,郎利輝,張士宏,王仲仁,苑士劍;充液拉深工藝的研究[J];哈爾濱工業(yè)大學學報;2000年05期
8 陳福民;;雙孔焊片多道拉深工藝及模具設計[J];科技創(chuàng)新與應用;2013年14期
9 張海鑫;異形盒拉深工藝計算探討[J];模具通訊;1982年02期
10 朱其興;;多工位無凸緣階梯筒形件連續(xù)拉深工藝計算及模具設計[J];機械科學與技術;1990年04期
相關會議論文 前9條
1 李紹林;鄭立人;;不銹鋼寬凸緣零件拉深工藝探索[A];塑性加工技術文集[C];1992年
2 賀淶慶;劉士卓;羅上銀;;拉深工藝參數(shù)的優(yōu)化計算[A];中國機械工程學會鍛壓學會第六屆學術年會論文集[C];1995年
3 王鵬程;何璞禎;朱寶泉;翟熙偉;;內(nèi)側(cè)減薄拉深工藝力的功平衡法分析[A];第八屆全國塑性加工學術年會論文集[C];2002年
4 王鵬程;何璞禎;朱寶泉;翟熙偉;;內(nèi)側(cè)減薄拉深工藝力的功平衡法分析[A];制造業(yè)與未來中國——2002年中國機械工程學會年會論文集[C];2002年
5 王良生;陶景庚;楊海晏;;寬凸緣偏心階梯圓筒件的拉深工藝[A];塑性加工技術文集[C];1992年
6 杧■;金寶玉;;電機罩殼拉深工藝及模具[A];塑性加工技術文集[C];1992年
7 吳培;王鵬程;;AZ31鎂合金板筒形件熱拉深工藝研究進展[A];第六屆華北(擴大)塑性加工學術年會文集[C];2009年
8 吳會平;申昱;陳軍;;多工序拉深工藝方案[A];第三屆中國CAE工程分析技術年會論文集[C];2007年
9 肖小亭;劉丹;廖毅娟;陳登;;側(cè)壁帶矩形孔圓筒形件拉深工藝研究[A];低碳技術與材料產(chǎn)業(yè)發(fā)展研討會論文集[C];2010年
相關碩士學位論文 前10條
1 龐毅;濾清器外殼拉深工藝的計算機輔助分析及工藝改進[D];廣西大學;2016年
2 鄧金虎;拉深工藝對制件質(zhì)量和模具壽命影響的研究[D];重慶大學;2008年
3 譚欣珍;拉深工藝的試驗研究及有限元模擬[D];南昌大學;2008年
4 王芳芳;螺母板溫差拉深工藝研究[D];上海交通大學;2013年
5 席慶標;微拉深工藝的實驗研究及計算機模擬[D];上海交通大學;2007年
6 王鵬;基于Visual Basic 6.0和軟件工程學的拉深工藝軟件系統(tǒng)設計[D];新疆大學;2007年
7 王芳;拉深工藝軟件工程分析與CAD[D];山東大學;2005年
8 王云;汽車輪罩拉深工藝穩(wěn)健性設計及型面補償數(shù)值模擬研究[D];上海交通大學;2010年
9 盛志平;AZ31鎂合金板材拉深工藝的研究[D];上海交通大學;2009年
10 羅平平;充液拉深工藝中液室壓力系統(tǒng)的建模及學習控制的研究[D];哈爾濱工業(yè)大學;2006年
,本文編號:1854599
本文鏈接:http://sikaile.net/kejilunwen/dongligc/1854599.html