燃氣輪機總體與空氣系統(tǒng)耦合計算方法研究與匹配分析
發(fā)布時間:2018-04-05 13:47
本文選題:燃氣輪機 切入點:空氣系統(tǒng) 出處:《南京航空航天大學》2016年碩士論文
【摘要】:隨著燃氣輪機技術的發(fā)展,渦輪前溫度的上升與渦輪葉片耐高溫材料的限制導致了空氣系統(tǒng)引氣量的提高,空氣系統(tǒng)對燃氣輪機的總體性能的影響越來越大,因此,對燃氣輪機總體與空氣系統(tǒng)耦合計算方法研究具有重要價值。本文結合前人研究成果以及工程氣動熱力理論,對燃氣輪機總體性能仿真方法與空氣系統(tǒng)可壓縮流體網絡建模方法分別進行了研究,并在此基礎上對考慮空氣系統(tǒng)影響的燃氣輪機總體性能進行了匹配分析;跓崃W原理對燃氣輪機熱力計算方法進行了研究,確定了變比熱計算工質物性參數、等溫焓差法確定燃燒室油氣比的方法。通過這些方法,建立了燃氣輪機各部件包括進氣道、壓氣機、燃燒室、渦輪、噴管的熱力性能計算模型,完成了燃氣輪機從進口到出口各個截面氣動熱力參數的計算鏈。在燃氣輪機共同工作條件的基礎上,確定了Newton-Raphson迭代求解的匹配計算思路,其中對于轉子部件特性曲線的處理,采用非對齊數據二元插值法提取壓氣機渦輪性能的方法。同時針對航空發(fā)動機空氣系統(tǒng)中高速氣體流動計算,采用流體網絡法進行節(jié)點分支網絡建模。其中采用了廣義一維流動理論,通過比擬變換和龍格—庫塔數值積分方法求解微分方程,得到簡單分支結構(漸變截面換熱管流動)流動參數的求解方法;采用經驗損失系數方法求解復雜分支結構(截面突變、彎管、帶網格截面、三通管)的進出口流動參數關系,最終形成一套適用于空氣系統(tǒng)以及類似的氣路管網計算建模方法。根據上述研究的熱力計算建模方法,在考慮空氣系統(tǒng)從高低壓氣機引氣冷卻渦輪葉片對燃氣輪機總體性能的影響的基礎上,開發(fā)了燃氣輪機總體和空氣系統(tǒng)耦合計算工具。針對某型地面航改燃氣輪機,計算并分析了不同工作環(huán)境、不同油門角度、不同動力渦輪導向器安裝角下燃氣輪機總體性能變化規(guī)律。并且,特別針對空氣系統(tǒng)影響,在控制尾噴管面積以及動力渦輪轉速的情況下,得到如下結論:保持油門角度不變,隨著引氣量的提高,渦輪前溫度隨之提高,總功率相應的提高了,耗油率先增加后降低;保持油門角度可調,使引氣量隨著渦輪前溫度增大相應增大,則輸出功率提高,耗油率先降低后提高,存在最佳耗油率。
[Abstract]:With the development of gas turbine technology, the increase of turbine front temperature and the limitation of high temperature resistant material of turbine blade lead to the increase of air entrainment, and the influence of air system on the overall performance of gas turbine is more and more great.It is of great value to study the coupling calculation method between gas turbine and air system.In this paper, combined with previous research results and engineering aerodynamics theory, the simulation method of gas turbine's overall performance and the modeling method of compressible fluid network for air system are studied respectively.On this basis, the overall performance of gas turbine considering the influence of air system is analyzed.Based on the thermodynamic principle, the thermodynamic calculation method of gas turbine is studied, and the calculation parameters of working fluid properties with variable specific heat and the method of determining the oil / gas ratio of combustion chamber by isothermal enthalpy difference method are determined.Through these methods, the thermodynamic performance calculation model of gas turbine components including inlet, compressor, combustion chamber, turbine and nozzle is established, and the calculation chain of aerodynamic thermodynamic parameters of each section of gas turbine from inlet to outlet is completed.On the basis of the common working conditions of gas turbines, the matching calculation idea of Newton-Raphson iterative solution is determined, in which the non-aligned data binary interpolation method is used to extract compressor turbine performance for the processing of rotor component characteristic curves.At the same time, the node branch network is modeled by using fluid network method to calculate the high speed gas flow in the aero-engine air system.The generalized one-dimensional flow theory is used to solve the differential equations by analogy transformation and Runge-Kutta numerical integral method.The empirical loss coefficient method is used to solve the inlet and outlet flow parameter relations of complex branch structures (section mutation, curved pipe, gridding section, three-way pipe). Finally, a set of modeling method for air system and similar gas pipeline network is developed.On the basis of the thermodynamic calculation modeling method mentioned above and considering the effect of the turbine blade on the overall performance of the gas turbine, a coupling calculation tool between the gas turbine and the air system is developed.The general performance of gas turbine under different working environment, different throttle angle and different installation angle of power turbine guide is calculated and analyzed for a certain type of ground aeronautical modified gas turbine.Especially for the influence of air system, under the condition of controlling the area of nozzle and the speed of power turbine, the conclusion is as follows: keeping the angle of throttle constant, the temperature of turbine front increases with the increase of entrainment.With the increase of the total power, the oil consumption increases first and then decreases, and the angle of throttle is adjustable, so that the gas intake increases with the increase of turbine temperature, the output power increases and the oil consumption decreases first and then increases, and there is the best fuel consumption rate.
【學位授予單位】:南京航空航天大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TK472
【參考文獻】
相關期刊論文 前10條
1 顧華年;朱志R,
本文編號:1715023
本文鏈接:http://sikaile.net/kejilunwen/dongligc/1715023.html