移動交界面流固耦合傳熱的數(shù)值穩(wěn)定性分析
發(fā)布時間:2018-01-12 12:06
本文關(guān)鍵詞:移動交界面流固耦合傳熱的數(shù)值穩(wěn)定性分析 出處:《東北大學(xué)學(xué)報(自然科學(xué)版)》2016年02期 論文類型:期刊論文
更多相關(guān)文章: 移動交界面 耦合傳熱 組合邊界條件 穩(wěn)定性分析 正則模態(tài)
【摘要】:研究了交界面移動情況下流固耦合穩(wěn)態(tài)傳熱的數(shù)值穩(wěn)定性問題.考慮Dirichlet-Robin組合邊界條件,用速度表征交界面的移動情況,流體域和固體域分別采用有限體積法和有限單元法進行離散及數(shù)值求解,利用Goudonov-Ryabenkii理論正則模態(tài)分析方法重點研究了交界面移動時數(shù)值方法的穩(wěn)定性,最終獲得了一條由耦合系數(shù)和移動速度組成的最優(yōu)曲線,并且證明了當(dāng)耦合系數(shù)和移動速度在這條曲線上取值時,離散的求解域能夠達到最快的收斂速度及絕對的穩(wěn)定性特征.為設(shè)計人員進行數(shù)值仿真時選取合理的參數(shù)提供了參考.
[Abstract]:The numerical stability of fluid-solid coupling steady state heat transfer under the condition of interface movement is studied. Considering the Dirichlet-Robin combination boundary condition, the velocity of the interface is used to characterize the movement of the interface. The finite volume method and the finite element method are used to discretize and solve the fluid domain and the solid domain respectively. In this paper, the stability of the numerical method for interface movement is studied by using the regular modal analysis method of Goudonov-Ryabenkii theory. Finally, an optimal curve consisting of coupling coefficient and moving velocity is obtained, and it is proved that when the coupling coefficient and moving velocity are selected on this curve. The discrete solution domain can achieve the fastest convergence speed and absolute stability characteristics, which provides a reference for designers to select reasonable parameters in numerical simulation.
【作者單位】: 東北大學(xué)機械工程與自動化學(xué)院;
【基金】:國家科技重大專項(2013ZX04011-011)
【分類號】:TK124
【正文快照】: 耦合傳熱描述的是一種熱量在流體域和固體域交互傳遞的物理現(xiàn)象.這一現(xiàn)象常見于許多工程實際應(yīng)用中,如換熱器中流體流動帶來的熱量傳遞[1],填充床蓄熱式熱交換器內(nèi)部的熱量傳遞[2],高爐爐缸內(nèi)部高溫鐵水和外部冷卻循環(huán)系統(tǒng)之間的熱量傳遞[3]等.求解流固耦合傳熱問題一般包括兩,
本文編號:1414169
本文鏈接:http://sikaile.net/kejilunwen/dongligc/1414169.html
最近更新
教材專著