基于神經(jīng)網(wǎng)絡和支持向量機的蔗渣鍋爐煙氣氧含量軟測量模型
本文關(guān)鍵詞:基于神經(jīng)網(wǎng)絡和支持向量機的蔗渣鍋爐煙氣氧含量軟測量模型
更多相關(guān)文章: 蔗渣鍋爐系統(tǒng) 煙氣氧含量 軟測量 神經(jīng)網(wǎng)絡 支持向量機
【摘要】:煙氣氧含量是確保蔗渣鍋爐燃燒優(yōu)化控制的重要因素之一。通過煙氣氧含量的監(jiān)測可以對鍋爐燃燒系統(tǒng)過程中的風燃比值進行及時有效的調(diào)節(jié),降低熱損失,提高效率,從而使鍋爐燃燒得到優(yōu)化。目前,蔗渣鍋爐系統(tǒng)主要利用熱磁式氧量傳感器和氧化鋯氧量傳感器進行煙氣氧含量的測量。但這些氧量分析儀精度差、價格昂貴、使用壽命短,并且測量時滯后較大,不利于鍋爐燃燒過程中的在線實時監(jiān)視。針對這些問題,本論文基于蔗渣鍋爐煙氣氧含量的特點、各影響因素之間的關(guān)系、常見軟測量模型、數(shù)據(jù)處理等基礎知識,決定采用神經(jīng)網(wǎng)絡和支持向量機的方法對蔗渣鍋爐氧含量進行軟測量建模。本文首先對采集的數(shù)據(jù)進行分析和預處理,再用BP神經(jīng)網(wǎng)絡來進行軟測量建模。由于預測數(shù)據(jù)誤差較大,泛化能力差,故對其方法進行改進,采用了改進型Elman神經(jīng)網(wǎng)絡方法。該方法可有效地提高預測精度,更易于收斂。然而由于神經(jīng)網(wǎng)絡具有的不穩(wěn)定性和局部極小點的問題,本文決定改用回歸支持向量機(SVR)方法進行建模。該方法采用訓練誤差的平方來代替松弛變量,但是計算量過大,訓練時間較長。為了避免求解二次規(guī)劃問題,提高訓練的速度,采用最小二乘支持向量機(LS-SVR)?墒荓S-SVR由于懲罰因子C及高斯核函數(shù)參數(shù)σ的參數(shù)選擇,丟失了SVR的魯棒性和松弛性,從而對模型產(chǎn)生了一定的影響,使預測精度有所下降。故考慮采用粒子群算法(PSO)來對LS-SVR中懲罰因子C及高斯核函數(shù)參數(shù)σ參數(shù)進行優(yōu)化,得到PSO-LS-SVR的軟測量模型。最后,運用SMPT-1000平臺和某糖廠實際現(xiàn)場數(shù)據(jù)來進行預測數(shù)據(jù)誤差比較。實驗結(jié)果表明得到的PSO-LS-SVR軟測量模型能達到良好的預測效果,符合工業(yè)要求。
【學位授予單位】:廣西大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TK229;TP18
【相似文獻】
中國期刊全文數(shù)據(jù)庫 前10條
1 王凡,孟立凡;關(guān)于使用神經(jīng)網(wǎng)絡推定操作者疲勞的研究[J];人類工效學;2004年03期
2 常國任;李仁松;沈醫(yī)文;劉鋼;;基于神經(jīng)網(wǎng)絡的直升機艦面系統(tǒng)效能評估[J];艦船電子工程;2007年03期
3 陳俊;;神經(jīng)網(wǎng)絡的應用與展望[J];佛山科學技術(shù)學院學報(自然科學版);2009年05期
4 許萬增;;神經(jīng)網(wǎng)絡的研究及其應用[J];國際技術(shù)經(jīng)濟研究學報;1990年01期
5 張軍華;神經(jīng)網(wǎng)絡技術(shù)及其在軍用系統(tǒng)中的應用[J];現(xiàn)代防御技術(shù);1992年04期
6 雷明,李作清,陳志祥,吳雅,楊叔子;神經(jīng)網(wǎng)絡在預報控制中的應用[J];機床;1993年11期
7 靳蕃;神經(jīng)網(wǎng)絡及其在鐵道科技中應用的探討[J];鐵道學報;1993年02期
8 宋玉華,王啟霞;神經(jīng)網(wǎng)絡診斷──神經(jīng)網(wǎng)絡在自動化領域里的應用[J];中國儀器儀表;1994年03期
9 魏銘炎;國內(nèi)外神經(jīng)網(wǎng)絡技術(shù)的研究與應用概況[J];電機電器技術(shù);1995年04期
10 王中賢,,錢頌迪;神經(jīng)網(wǎng)絡法在經(jīng)濟管理中的應用[J];航天工業(yè)管理;1995年04期
中國重要會議論文全文數(shù)據(jù)庫 前10條
1 徐春玉;;基于泛集的神經(jīng)網(wǎng)絡的混沌性[A];1996中國控制與決策學術(shù)年會論文集[C];1996年
2 周樹德;王巖;孫增圻;孫富春;;量子神經(jīng)網(wǎng)絡[A];2003年中國智能自動化會議論文集(上冊)[C];2003年
3 羅山;張琳;范文新;;基于神經(jīng)網(wǎng)絡和簡單規(guī)劃的識別融合算法[A];2009系統(tǒng)仿真技術(shù)及其應用學術(shù)會議論文集[C];2009年
4 郭愛克;馬盡文;丁康;;序言(二)[A];1999年中國神經(jīng)網(wǎng)絡與信號處理學術(shù)會議論文集[C];1999年
5 鐘義信;;知識論:神經(jīng)網(wǎng)絡的新機遇——紀念中國神經(jīng)網(wǎng)絡10周年[A];1999年中國神經(jīng)網(wǎng)絡與信號處理學術(shù)會議論文集[C];1999年
6 許進;保錚;;神經(jīng)網(wǎng)絡與圖論[A];1999年中國神經(jīng)網(wǎng)絡與信號處理學術(shù)會議論文集[C];1999年
7 金龍;朱詩武;趙成志;陳寧;;數(shù)值預報產(chǎn)品的神經(jīng)網(wǎng)絡釋用預報應用[A];1999年中國神經(jīng)網(wǎng)絡與信號處理學術(shù)會議論文集[C];1999年
8 田金亭;;神經(jīng)網(wǎng)絡在中學生創(chuàng)造力評估中的應用[A];第十二屆全國心理學學術(shù)大會論文摘要集[C];2009年
9 唐墨;王科俊;;自發(fā)展神經(jīng)網(wǎng)絡的混沌特性研究[A];2009年中國智能自動化會議論文集(第七分冊)[南京理工大學學報(增刊)][C];2009年
10 張廣遠;萬強;曹海源;田方濤;;基于遺傳算法優(yōu)化神經(jīng)網(wǎng)絡的故障診斷方法研究[A];第十二屆全國設備故障診斷學術(shù)會議論文集[C];2010年
中國重要報紙全文數(shù)據(jù)庫 前10條
1 美國明尼蘇達大學社會學博士 密西西比州立大學國家戰(zhàn)略規(guī)劃與分析研究中心資深助理研究員 陳心想;維護好創(chuàng)新的“神經(jīng)網(wǎng)絡硬件”[N];中國教師報;2014年
2 盧業(yè)忠;腦控電腦 驚世駭俗[N];計算機世界;2001年
3 葛一鳴 路邊文;人工神經(jīng)網(wǎng)絡將大顯身手[N];中國紡織報;2003年
4 中國科技大學計算機系 邢方亮;神經(jīng)網(wǎng)絡挑戰(zhàn)人類大腦[N];計算機世界;2003年
5 記者 孫剛;“神經(jīng)網(wǎng)絡”:打開復雜工藝“黑箱”[N];解放日報;2007年
6 本報記者 劉霞;美用DNA制造出首個人造神經(jīng)網(wǎng)絡[N];科技日報;2011年
7 健康時報特約記者 張獻懷;干細胞移植:修復受損的神經(jīng)網(wǎng)絡[N];健康時報;2006年
8 劉力;我半導體神經(jīng)網(wǎng)絡技術(shù)及應用研究達國際先進水平[N];中國電子報;2001年
9 ;神經(jīng)網(wǎng)絡和模糊邏輯[N];世界金屬導報;2002年
10 鄒麗梅 陳耀群;江蘇科大神經(jīng)網(wǎng)絡應用研究通過鑒定[N];中國船舶報;2006年
中國博士學位論文全文數(shù)據(jù)庫 前10條
1 楊旭華;神經(jīng)網(wǎng)絡及其在控制中的應用研究[D];浙江大學;2004年
2 李素芳;基于神經(jīng)網(wǎng)絡的無線通信算法研究[D];山東大學;2015年
3 石艷超;憶阻神經(jīng)網(wǎng)絡的混沌性及幾類時滯神經(jīng)網(wǎng)絡的同步研究[D];電子科技大學;2014年
4 王新迎;基于隨機映射神經(jīng)網(wǎng)絡的多元時間序列預測方法研究[D];大連理工大學;2015年
5 付愛民;極速學習機的訓練殘差、穩(wěn)定性及泛化能力研究[D];中國農(nóng)業(yè)大學;2015年
6 李輝;基于粒計算的神經(jīng)網(wǎng)絡及集成方法研究[D];中國礦業(yè)大學;2015年
7 王衛(wèi)蘋;復雜網(wǎng)絡幾類同步控制策略研究及穩(wěn)定性分析[D];北京郵電大學;2015年
8 張海軍;基于云計算的神經(jīng)網(wǎng)絡并行實現(xiàn)及其學習方法研究[D];華南理工大學;2015年
9 李艷晴;風速時間序列預測算法研究[D];北京科技大學;2016年
10 陳輝;多維超精密定位系統(tǒng)建模與控制關(guān)鍵技術(shù)研究[D];東南大學;2015年
中國碩士學位論文全文數(shù)據(jù)庫 前10條
1 章穎;混合不確定性模塊化神經(jīng)網(wǎng)絡與高校效益預測的研究[D];華南理工大學;2015年
2 賈文靜;基于改進型神經(jīng)網(wǎng)絡的風力發(fā)電系統(tǒng)預測及控制研究[D];燕山大學;2015年
3 李慧芳;基于憶阻器的渦卷混沌系統(tǒng)及其電路仿真[D];西南大學;2015年
4 陳彥至;神經(jīng)網(wǎng)絡降維算法研究與應用[D];華南理工大學;2015年
5 董哲康;基于憶阻器的組合電路及神經(jīng)網(wǎng)絡研究[D];西南大學;2015年
6 武創(chuàng)舉;基于神經(jīng)網(wǎng)絡的遙感圖像分類研究[D];昆明理工大學;2015年
7 李志杰;基于神經(jīng)網(wǎng)絡的上證指數(shù)預測研究[D];華南理工大學;2015年
8 陳少吉;基于神經(jīng)網(wǎng)絡血壓預測研究與系統(tǒng)實現(xiàn)[D];華南理工大學;2015年
9 張韜;幾類時滯神經(jīng)網(wǎng)絡穩(wěn)定性分析[D];渤海大學;2015年
10 邵雪瑩;幾類時滯不確定神經(jīng)網(wǎng)絡的穩(wěn)定性分析[D];渤海大學;2015年
本文編號:1204348
本文鏈接:http://sikaile.net/kejilunwen/dongligc/1204348.html