低空大傾角立體影像自動匹配方法研究
[Abstract]:In recent years, with the construction of Digital Earth and Smart City, 3D modeling technology has developed rapidly. Low altitude tilt photogrammetry adopts multi-angle photography, which can obtain multi-directional information such as top and side texture of ground object at the same time, which can meet the requirements of 3D modeling for image data. The application of the data obtained by tilt photogrammetry to 3D modeling can save the cost of 3D modeling and improve the speed of 3D modeling. It has more advantages than traditional low altitude photogrammetry in 3D modeling. However, low altitude tilt photogrammetry contains complex 3D scene information and more information, data amount and data redundancy, and has greater radiation distortion and geometric deformation because of taking pictures of ground objects from multiple angles. The phenomena such as mutual occlusion of ground objects, shadow of ground objects, parallax fracture and so on are also common in images, which greatly increase the difficulty of oblique image matching. In this paper, the automatic matching method of low altitude and large inclination stereo image is studied, and combined with the depth learning method, which is one of the hotspots of computer vision research, a deep learning aided image matching method is proposed. The deep learning method is used to classify the images, and the image matching is carried out based on the classification results. The main contents of this paper are as follows: (1) A deep learning aided image matching method is proposed. In this paper, a recurrent recognition model of deep convolution neural network is proposed. The image samples are selected to train the convolution neural network, and then the images to be classified are input for classification. The model first carries on the initial recognition to the input image, then automatically distinguishes the classification situation in the unit grid, and carries on the fine recognition and the classification according to the classification situation, and finally accurately identifies and locates the scene target. (2) based on the classification results of fine scene, the features of the image are extracted and matched. Using VS2008 as programming platform and C language, the image matching algorithm based on SIFT and Harris-Laplace is implemented. Firstly, the image multi-scale space is established, the Harris interest points are detected, and the feature points are screened by LoG operator, and the feature points are described by SIFT method. In the stage of searching for matching points, according to the scene type to which the feature points belong, the same scene of the image to be matched is searched. Thus, the matching search quantity is reduced and the matching accuracy and efficiency are improved. (3) the experimental results are analyzed by using the scene classification method and the image matching method assisted by depth learning. The experimental results show that the scene classification method based on depth learning can obtain high precision results in the classification of high resolution remote sensing image scenes, and the number of matching points can be effectively increased by combining with the image matching algorithm in this paper. Improve matching accuracy and efficiency.
【學(xué)位授予單位】:東華理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:P23
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 杜敬;;基于深度學(xué)習(xí)的無人機(jī)遙感影像水體識別[J];江西科學(xué);2017年01期
2 許夙暉;慕曉冬;趙鵬;馬驥;;利用多尺度特征與深度網(wǎng)絡(luò)對遙感影像進(jìn)行場景分類[J];測繪學(xué)報;2016年07期
3 盧宏濤;張秦川;;深度卷積神經(jīng)網(wǎng)絡(luò)在計算機(jī)視覺中的應(yīng)用研究綜述[J];數(shù)據(jù)采集與處理;2016年01期
4 袁修孝;陳時雨;;傾斜航攝影像匹配方法探究[J];測繪地理信息;2015年06期
5 趙霞;朱慶;肖雄武;李德仁;郭丙軒;張鵬;胡翰;丁雨淋;;基于同形變換的航空傾斜影像自動匹配方法[J];計算機(jī)應(yīng)用;2015年06期
6 肖雄武;郭丙軒;李德仁;趙霞;江萬壽;胡翰;張春森;;一種具有仿射不變性的傾斜影像快速匹配方法[J];測繪學(xué)報;2015年04期
7 王曉華;李克;鄧喀中;楊化超;;基于增強(qiáng)MSER和Harris-Laplace互補(bǔ)不變特征的遙感圖像配準(zhǔn)[J];紅外技術(shù);2015年01期
8 高常鑫;桑農(nóng);;基于深度學(xué)習(xí)的高分辨率遙感影像目標(biāo)檢測[J];測繪通報;2014年S1期
9 王曉華;鄧喀中;楊化超;;集成MSER和SIFT特征的遙感影像自動配準(zhǔn)算法[J];光電工程;2013年12期
10 張永軍;王博;段延松;;一種針對大傾角影像匹配粗差剔除的算法[J];武漢大學(xué)學(xué)報(信息科學(xué)版);2013年10期
相關(guān)博士學(xué)位論文 前5條
1 馮子勇;基于深度學(xué)習(xí)的圖像特征學(xué)習(xí)和分類方法的研究及應(yīng)用[D];華南理工大學(xué);2016年
2 姚國標(biāo);傾斜影像匹配關(guān)鍵算法及應(yīng)用研究[D];中國礦業(yè)大學(xué);2014年
3 鐘燦;非常規(guī)航攝影像定位方法及精度評定[D];武漢大學(xué);2013年
4 張云生;自適應(yīng)三角形約束的多基元多視影像匹配方法[D];武漢大學(xué);2011年
5 桂德竹;基于組合寬角相機(jī)低空影像的城市建筑物三維模型構(gòu)建研究[D];中國礦業(yè)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 郭麗麗;基于深度學(xué)習(xí)的圖像分類方法研究[D];中國礦業(yè)大學(xué);2016年
2 郭鵬;深度卷積神經(jīng)網(wǎng)絡(luò)及其在手寫體漢字識別中的應(yīng)用研究[D];四川師范大學(xué);2016年
3 汪豪;基于特征點(diǎn)的航空影像匹配算法研究[D];東華理工大學(xué);2015年
4 張振超;多視角傾斜航空影像匹配技術(shù)研究[D];解放軍信息工程大學(xué);2015年
5 肖雄武;基于特征不變的傾斜影像匹配算法研究與應(yīng)用[D];西安科技大學(xué);2014年
6 史永凱;基于仿射不變特征的無人機(jī)影像匹配研究[D];中國礦業(yè)大學(xué);2014年
7 李英杰;航空傾斜多視影像匹配方法研究[D];中國測繪科學(xué)研究院;2014年
8 郭軍;POS數(shù)據(jù)輔助的多角度影像自動空三轉(zhuǎn)點(diǎn)方法[D];中南大學(xué);2014年
9 王興慧;應(yīng)用于傾斜影像的點(diǎn)特征優(yōu)化提取與寬基線匹配[D];蘭州交通大學(xué);2014年
10 滕義偉;基于多尺度特征點(diǎn)提取的圖像配準(zhǔn)算法研究[D];北京工業(yè)大學(xué);2013年
,本文編號:2480478
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2480478.html