基于點云的數(shù)據(jù)處理技術(shù)及三維重建研究
[Abstract]:With the continuous updating of spatial data acquisition equipment, the single data acquisition method can not meet the needs of 3D reconstruction. For example, UAV aerial photography image scale, wide angle of view, high present situation, but the lack of building facade information; The data of point cloud collected by 3D laser scanner have high accuracy, abundant information of ground objects, no dead angle but large area topography, and the collection of point cloud on top of building is very difficult. Based on this, a combination of UAV technology and 3D laser scanning technology is proposed, and the data processing technology and reconstruction method of the two technologies are discussed. Based on the summary of low altitude photogrammetry system, this paper analyzes the flow chart of UAV field data acquisition and the method of setting up image control points, and discusses the processing method of internal data in view of the process of aerial image acquiring point cloud data. Secondly, combining with the working principle of 3D laser scanner and the method of data acquisition in field of work, the principle of setting target is analyzed, and the registration method of multi-view cloud is discussed, and different experimental schemes are designed. The accuracy of different registration methods and the effect of different number of groups on registration accuracy are compared and analyzed. Thirdly, combined with the existing research results, this paper focuses on the point cloud data processing technology, respectively from the point cloud noise reduction, point cloud reduction and point cloud classification three aspects of analysis and research. Based on the characteristics of the study area, the methods of noise reduction and terrain reduction are explored. Finally, based on the lack of accuracy of 3D reconstruction model of mixed terrain and ground objects, the paper uses decision tree classification method to divide 3D reconstruction process into two simultaneous processes: terrain 3D reconstruction and ground object 3D reconstruction. Then the reconstruction method is optimized and the modeling efficiency is improved on the basis of ensuring the modeling accuracy.
【學(xué)位授予單位】:河北工程大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:P225.2;P23
【參考文獻】
相關(guān)期刊論文 前10條
1 李丁;鄒自力;;基于包圍盒法三維掃描點云數(shù)據(jù)精簡方法比較[J];江西測繪;2015年02期
2 陳西江;花向紅;魯鐵定;田茂;;利用平面特征和KNNS提高點云配準效率[J];中國礦業(yè)大學(xué)學(xué)報;2014年06期
3 韓賢權(quán);朱慶;丁雨淋;周東波;;散亂點云數(shù)據(jù)精配準的粒子群優(yōu)化算法[J];武漢大學(xué)學(xué)報(信息科學(xué)版);2014年10期
4 葉冬榮;李維詩;張滋黎;周維虎;;基于二次精簡的散亂點云精簡方法[J];計算機系統(tǒng)應(yīng)用;2014年09期
5 葉珉?yún)?花向紅;陳西江;魏成;;基于正交整體最小二乘平面擬合的點云數(shù)據(jù)去噪方法研究[J];測繪通報;2013年11期
6 田野;向宇;高峰;高亮;;利用Pictometry傾斜攝影技術(shù)進行全自動快速三維實景城市生產(chǎn)——以常州市三維實景城市生產(chǎn)為例[J];測繪通報;2013年02期
7 孫軍華;謝萍;劉震;張廣軍;;基于分層塊狀全局搜索的三維點云自動配準[J];光學(xué)精密工程;2013年01期
8 譚衢霖;王今飛;;結(jié)合高分辨率多光譜影像和LiDAR數(shù)據(jù)提取城區(qū)建筑[J];應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報;2011年05期
9 王茹;周明全;邢毓華;;基于聚類平面特征的三維點云數(shù)據(jù)精簡算法[J];計算機工程;2011年10期
10 肖春霞;;Multi-Level Partition of Unity Algebraic Point Set Surfaces[J];Journal of Computer Science & Technology;2011年02期
相關(guān)博士學(xué)位論文 前4條
1 陳焱明;基于機載與車載LiDAR數(shù)據(jù)的建筑物模型多視三維重建研究[D];南京大學(xué);2015年
2 姜巍;三維幾何模型的內(nèi)蘊對稱檢測技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2013年
3 李寶;三維點云的魯棒處理技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2011年
4 李劍;基于激光測量的自由曲面數(shù)字制造基礎(chǔ)技術(shù)研究[D];浙江大學(xué);2002年
相關(guān)碩士學(xué)位論文 前8條
1 李明慈;微型無人機攝影測量數(shù)據(jù)處理研究[D];北京建筑大學(xué);2015年
2 趙志剛;航空攝影測量外業(yè)像控點布設(shè)的精度分析及應(yīng)用[D];長安大學(xué);2015年
3 劉葛;基于Matrix軟件系統(tǒng)正射影像圖的研究[D];昆明理工大學(xué);2014年
4 吳勝浩;車載激光點云的顏色信息獲取與融合處理[D];首都師范大學(xué);2011年
5 孫正林;三維激光掃描點云數(shù)據(jù)濾波方法研究[D];中南大學(xué);2011年
6 蔡寬;基于點云的三維重建技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2010年
7 董秀軍;三維激光掃描技術(shù)及其工程應(yīng)用研究[D];成都理工大學(xué);2007年
8 錢錦鋒;逆向工程中的點云處理[D];浙江大學(xué);2005年
,本文編號:2376420
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2376420.html