總體最小二乘聯(lián)合平差方法及其應(yīng)用研究
[Abstract]:With the development of spatial geodetic technology and the abundance of data types, how to effectively fuse all kinds of observation data for joint adjustment to obtain useful information of different types of observation data and obtain reliable adjustment results has become a hot research topic. However, most of the joint adjustment results are based on Gauss-Markov model expansion (it is considered that only observation vectors contain random errors). In many cases, the coefficient matrix is also affected by random errors. Therefore, a more reasonable method should consider the variable containing error model (errors-in-variables,EIV). The existing joint adjustment methods have the following shortcomings: (1) the joint adjustment method is solved under the least square adjustment criterion. In practice, the coefficient matrix is also composed of observation data with random errors; (2) in solving the joint adjustment, the majority of literatures regard all kinds of data as equal weight ratio, that is to say, the proportion of all kinds of data in the joint adjustment is assumed to be the same. In view of the above problems, this paper applies the total least square method to the joint adjustment problem, and uses the relative weight ratio (the weight ratio factor) to balance the proportion between two or more kinds of data. The estimation formula of model parameters under the general least square combined adjustment criterion is derived, and the determination method of relative weight ratio in joint adjustment is explored. The combined adjustment method is applied to the volcanic deformation of the Mogi model, and the application of the derivation method to the practical problems is verified. The specific research contents are as follows: 1. The fusion of different types of data is the basic problem of geodetic data processing. The weighted global least square adjustment method for multiple observation data is derived. In the determination of relative weight ratio, several schemes are designed, and the weight ratio is determined by combining the prior unit weight variance method and the discriminant function minimization method. The results show that the prior unit weight variance method is suitable for the case where the prior information of the data is relatively accurate. When the prior information is not accurate, the discriminant function minimization method can obtain better parameter estimation results. 2. In view of the fact that the discriminant function is not unique, the empirical discriminant function is used to determine the weight ratio. In this paper, a weighted population least squares combined adjustment method with adaptive weight ratio factor is derived, and the Helmert variance component estimation formula suitable for weighted population least squares combined adjustment is given. The model parameters are obtained by adaptively solving the proportion of different kinds of observation data participating in the joint adjustment. The simulation results show that the proposed weighted population least squares combined adjustment method with adaptive weight ratio factor can obtain the same adjustment results as the existing least square variance component estimation method. It is better than the least square combined adjustment and the weighted total least squares combined adjustment without weight ratio factor. Compared with the existing least square variance component estimation method, the derivation method has higher computational efficiency. By combining In SAR and GPS data, the derivation method is applied to the inversion of L'Aquila seismic slip distribution, and the weighted total least squares combined adjustment method with the least square combined adjustment method is compared with the least squares combined adjustment method. Based on the study of joint adjustment and the determination of weight ratio by minimization of discriminant function, the application of total least squares combined adjustment method in inversion of Mogi model of Tianchi volcano in Changbai Mountain is systematically studied. According to the nonlinear characteristics of the model, the method of calculating the cofactor matrix between the observation vector and the coefficient matrix is given for the linearization of the model. The results show that the proposed method can obtain reasonable estimation results of pressure source parameters and has certain practical application value.
【學(xué)位授予單位】:東華理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:P207
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱明德;林水生長(zhǎng)“多對(duì)多”系統(tǒng)參數(shù)最小二乘辨識(shí)[J];南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);1986年01期
2 周叮;最小二乘識(shí)別的一個(gè)改進(jìn)算法[J];力學(xué)與實(shí)踐;1992年06期
3 王守道,徐森根;晶體結(jié)構(gòu)參數(shù)阻尼最小二乘精化法[J];科學(xué)通報(bào);1981年23期
4 楊自強(qiáng);廣義最小二乘模型的應(yīng)用[J];科學(xué)通報(bào);1982年07期
5 王琴;沈遠(yuǎn)彤;;二尺度最小二乘小波支持向量回歸[J];工程地球物理學(xué)報(bào);2009年04期
6 姜華;曹紅妍;;基于最小二乘支持向量機(jī)的鐵路客運(yùn)量預(yù)測(cè)研究[J];河南科學(xué);2010年08期
7 楊自強(qiáng);;廣義最小二乘模型與判別分類(lèi)[J];物化探電子計(jì)算技術(shù);1981年03期
8 范鷹,時(shí)軍;最小二乘原則的一個(gè)推廣應(yīng)用[J];天津城市建設(shè)學(xué)院學(xué)報(bào);1998年04期
9 文國(guó)倉(cāng);田曉程;;基于加權(quán)整體最小二乘的多元線(xiàn)性回歸分析[J];青海大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年04期
10 鄭彥玲;;剔除相關(guān)性的最小二乘理論研究[J];數(shù)理醫(yī)藥學(xué)雜志;2008年06期
相關(guān)會(huì)議論文 前10條
1 孫明軒;畢宏博;;最小二乘學(xué)習(xí)辨識(shí)[A];中國(guó)自動(dòng)化學(xué)會(huì)控制理論專(zhuān)業(yè)委員會(huì)D卷[C];2011年
2 袁慶;樓立志;陳瑋嫻;;加權(quán)總體最小二乘在三維基準(zhǔn)轉(zhuǎn)換中的應(yīng)用[A];第二屆中國(guó)衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集[C];2011年
3 宋海鷹;桂衛(wèi)華;陽(yáng)春華;;基于核偏最小二乘的簡(jiǎn)約最小二乘支持向量機(jī)及其應(yīng)用研究[A];第二十六屆中國(guó)控制會(huì)議論文集[C];2007年
4 陳慧波;丁鋒;;基于輸出快采樣數(shù)據(jù)的確定性系統(tǒng)最小二乘盲辨識(shí)方法[A];第二十六屆中國(guó)控制會(huì)議論文集[C];2007年
5 苑云;朱肇昆;尚洋;;一種加速最小二乘匹配方法[A];第十三屆全國(guó)實(shí)驗(yàn)力學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2012年
6 康傳會(huì);汪曉東;汪軻;常健麗;;基于最小二乘支持向量機(jī)的遲滯建模方法[A];第二十九屆中國(guó)控制會(huì)議論文集[C];2010年
7 于正n\;朱圣英;崔平遠(yuǎn);;小天體地形重構(gòu)技術(shù)的最小二乘實(shí)現(xiàn)與精度分析[A];中國(guó)宇航學(xué)會(huì)深空探測(cè)技術(shù)專(zhuān)業(yè)委員會(huì)第八屆學(xué)術(shù)年會(huì)論文集(下篇)[C];2011年
8 閆守柱;羅佳;吉雯龍;張傳海;胡曉明;;基于ACPSO的最小二乘支持向量機(jī)分類(lèi)方法研究[A];系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)論文集(第15卷)[C];2014年
9 周明東;林俊聰;金小剛;;基于最小二乘網(wǎng)格的模型修補(bǔ)[A];中國(guó)計(jì)算機(jī)圖形學(xué)進(jìn)展2008--第七屆中國(guó)計(jì)算機(jī)圖形學(xué)大會(huì)論文集[C];2008年
10 胡亞軒;王慶良;崔篤信;王文萍;李克;鄭傳芳;陳紅衛(wèi);;Mogi模型的阻尼最小二乘反演及其應(yīng)用[A];中國(guó)地球物理學(xué)會(huì)第22屆年會(huì)論文集[C];2006年
相關(guān)博士學(xué)位論文 前1條
1 陶葉青;總體最小二乘模型及其在礦區(qū)測(cè)量數(shù)據(jù)處理中的應(yīng)用研究[D];中國(guó)礦業(yè)大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 秦天龍;方程誤差模型基于最新估計(jì)的加權(quán)新息最小二乘辨識(shí)[D];哈爾濱工業(yè)大學(xué);2015年
2 于冬冬;病態(tài)總體最小二乘解算方法及應(yīng)用研究[D];東華理工大學(xué);2015年
3 劉曉飛;提高流量計(jì)檢定臺(tái)檢測(cè)效率方法研究[D];華南理工大學(xué);2015年
4 陶武勇;總體最小二乘粗差探測(cè)和定位[D];東華理工大學(xué);2015年
5 薛松;基于KFCM的模糊最小二乘SVM研究[D];南京郵電大學(xué);2015年
6 冉恩全;基于最小二乘復(fù)指數(shù)法的局部模態(tài)參數(shù)識(shí)別及應(yīng)用[D];重慶大學(xué);2015年
7 孫鄖松;分頻編碼最小二乘偏移方法研究[D];中國(guó)石油大學(xué)(華東);2014年
8 胡明;基于最小二乘支持向量機(jī)的航空伽瑪能譜分段去噪方法研究[D];東華理工大學(xué);2016年
9 余航;總體最小二乘聯(lián)合平差方法及其應(yīng)用研究[D];東華理工大學(xué);2016年
10 周鑫;最小二乘策略迭代算法研究[D];蘇州大學(xué);2014年
,本文編號(hào):2365065
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2365065.html