天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 測繪論文 >

EM算法在不完全監(jiān)測數(shù)據(jù)處理中的應(yīng)用研究

發(fā)布時間:2018-11-01 18:14
【摘要】:眾所周知,在開展測量工作時會受到地形條件、天氣、環(huán)境、人為等因素的影響,這些因素常常會導(dǎo)致觀測數(shù)據(jù)缺失或者含有粗差,使得觀測數(shù)據(jù)變得不完全,F(xiàn)在,對于變形監(jiān)測的數(shù)據(jù)處理方法大多數(shù)都是基于完全數(shù)據(jù)的,若不對缺失數(shù)據(jù)處理,往往會影響到結(jié)果的準(zhǔn)確性。在出現(xiàn)數(shù)據(jù)缺失這種情況時,常常采用刪除法、普通填補法、擬合法或預(yù)測法對缺失數(shù)據(jù)進行處理,然后再利用常規(guī)方法對數(shù)據(jù)進行建模分析。但是這些方法都有一定的局限性,刪除法實施起來簡單、快捷,但是它導(dǎo)致了資源的浪費,當(dāng)缺失數(shù)據(jù)較多或處于較重要的位置時,該方法可能導(dǎo)致結(jié)果的錯誤。普通填補法、擬合法和預(yù)測法雖然能夠一定程度上提高變形監(jiān)測數(shù)據(jù)處理質(zhì)量,但是得到的并一定是最優(yōu)的結(jié)果,因為這些方法都是先對缺失的數(shù)據(jù)進行填補,然后再進行建模分析預(yù)測,由于這些方法自身的局限性,其填補的數(shù)據(jù)也存在一定的不確定性,再利用它來進行建模分析可能就會導(dǎo)致結(jié)果產(chǎn)生偏差;谝陨锨闆r,本文在分析了缺失數(shù)據(jù)的機制以及缺失數(shù)據(jù)處理方法之后,根據(jù)統(tǒng)計領(lǐng)域中的經(jīng)典算法EM算法(Expectation-maximization Algorithm,又譯作最大期望化算法)原理,探討了當(dāng)變形監(jiān)測數(shù)據(jù)出現(xiàn)缺失時利用EM算法對其進行處理的方法。本文針對EM算法在不完全監(jiān)測數(shù)據(jù)處理中的研究主要做了以下的工作:(1)論述了變形監(jiān)測中常用的數(shù)據(jù)處理方法,并對這些方法進行了總結(jié)比較,分析各種方法在測繪數(shù)據(jù)處理中的適用情形和優(yōu)缺點。(2)根據(jù)數(shù)據(jù)缺失機制介紹了測量中常用的不完全測量數(shù)據(jù)的處理方法,通過對比各種缺失數(shù)據(jù)處理方法,分析了各種方法的適用性。(3)對EM算法的原理和性質(zhì)進行了介紹,詳細的介紹了EM算法同常用的預(yù)報模型AR(p)模型結(jié)合處理不完全監(jiān)測數(shù)據(jù)的步驟。通過對比刪除法和回歸填補法在單一缺失和多重缺失情況下的預(yù)報效果,證實了EM算法用于變形監(jiān)測不完全數(shù)據(jù)處理中的可靠性。(4)在完全數(shù)據(jù)情況下分別采用GM(1,1)灰色模型和BP神經(jīng)網(wǎng)絡(luò)模型對沉降數(shù)據(jù)進行預(yù)測,對比在單一缺失數(shù)據(jù)與多重缺失情況下采用EM算法估計的AR(p)模型的預(yù)測結(jié)果。通過對比分析發(fā)現(xiàn),4種方法的預(yù)測效果相差不大,綜合比較EM算法估計的AR(p)模型的預(yù)測精度較高。
[Abstract]:As we all know, the survey work will be affected by the terrain conditions, weather, environment, human factors and other factors, these factors will often lead to the lack of observation data or contain gross error, make the observation data become incomplete. Nowadays, most of the data processing methods for deformation monitoring are based on complete data. If the missing data is not processed, the accuracy of the results will be affected. In the case of missing data, deletion method, general filling method, fitting method or prediction method are often used to process the missing data, and then the data are modeled and analyzed by the conventional method. However, these methods have some limitations. Deletion method is simple and fast to implement, but it leads to the waste of resources. When there are more missing data or in a more important position, the method may lead to the error of the result. The common filling method, the fitting method and the prediction method can improve the processing quality of deformation monitoring data to some extent, but the result must be the best, because these methods are to fill the missing data first. Then the modeling analysis and prediction are carried out. Due to the limitations of these methods there are some uncertainties in the data filled by these methods. Using them for modeling and analysis may lead to the deviation of the results. Based on the above situation, this paper analyzes the mechanism of missing data and the methods of processing missing data, and according to the principle of EM algorithm, a classical algorithm in the field of statistics, which is translated as maximum expectation algorithm, The method of using EM algorithm to deal with deformation monitoring data when it is missing is discussed. In this paper, the research of EM algorithm in incomplete monitoring data processing has been done as follows: (1) the data processing methods commonly used in deformation monitoring are discussed, and these methods are summarized and compared. The application of various methods in surveying and mapping data processing and their advantages and disadvantages are analyzed. (2) according to the mechanism of missing data, the common methods of incomplete measurement data processing are introduced, and the methods of missing data processing are compared. The applicability of various methods is analyzed. (3) the principle and properties of the EM algorithm are introduced, and the steps of processing incomplete monitoring data by combining the EM algorithm with the commonly used prediction model AR (p) model are introduced in detail. By comparing the prediction results of deletion method and regression filling method in the case of single deletion and multiple deletions, The reliability of EM algorithm used in incomplete data processing of deformation monitoring is confirmed. (4) in the case of complete data, GM (1k-1) grey model and BP neural network model are used to predict the settlement data, respectively. The prediction results of AR (p) model estimated by EM algorithm under the condition of single missing data and multiple deletions are compared. By comparison and analysis, it is found that the prediction effect of the four methods is not different, and the prediction accuracy of the AR (p) model estimated by comprehensive comparison with EM algorithm is higher.
【學(xué)位授予單位】:成都理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:P207

【參考文獻】

相關(guān)期刊論文 前10條

1 唐帥;王方方;;全要素生產(chǎn)率影響行業(yè)收入差距的實證研究[J];長安大學(xué)學(xué)報(社會科學(xué)版);2015年03期

2 黃祥;何幼樺;;AR(p)模型中的缺失數(shù)據(jù)估計[J];應(yīng)用數(shù)學(xué)與計算數(shù)學(xué)學(xué)報;2013年04期

3 李鑫;曹顯兵;;不完全數(shù)據(jù)下線性回歸模型的參數(shù)估計[J];數(shù)學(xué)的實踐與認(rèn)識;2013年16期

4 占偉;黃立人;劉志廣;孟憲綱;;數(shù)據(jù)缺失對GNSS時間序列分析的影響[J];大地測量與地球動力學(xué);2013年02期

5 溫艷清;;EM算法的一個應(yīng)用[J];山東理工大學(xué)學(xué)報(自然科學(xué)版);2012年06期

6 王鳳梅;胡麗霞;;一種基于近鄰規(guī)則的缺失數(shù)據(jù)填補方法[J];計算機工程;2012年21期

7 焦明連;吳清海;黃大寧;;礦區(qū)地面沉降預(yù)測預(yù)警系統(tǒng)開發(fā)[J];測繪通報;2012年S1期

8 沐守寬;周偉;;缺失數(shù)據(jù)處理的期望-極大化算法與馬爾可夫蒙特卡洛方法[J];心理科學(xué)進展;2011年07期

9 徐健銳;李星毅;施化吉;;處理缺失數(shù)據(jù)的短時交通流預(yù)測模型[J];計算機應(yīng)用;2010年04期

10 楊軍;趙宇;丁文興;;抽樣調(diào)查中缺失數(shù)據(jù)的插補方法[J];數(shù)理統(tǒng)計與管理;2008年05期

相關(guān)博士學(xué)位論文 前2條

1 陳偉;自回歸模型估計理論及其在變形監(jiān)測數(shù)據(jù)處理中的應(yīng)用[D];武漢大學(xué);2013年

2 陳云;居民收入分布及其變遷的統(tǒng)計研究[D];首都經(jīng)濟貿(mào)易大學(xué);2009年

相關(guān)碩士學(xué)位論文 前10條

1 張宏東;EM算法及其應(yīng)用[D];山東大學(xué);2014年

2 杜琨;變形監(jiān)測數(shù)據(jù)處理的方法研究[D];中南大學(xué);2013年

3 林東方;基于EM算法的不完全測量數(shù)據(jù)的處理方法研究[D];中南大學(xué);2012年

4 侯賀;缺失數(shù)據(jù)處理方法的研究及其在軟測量技術(shù)中的應(yīng)用[D];東北大學(xué);2011年

5 金成美;缺失數(shù)據(jù)填補方法研究[D];遼寧工業(yè)大學(xué);2011年

6 鄧銀燕;缺失數(shù)據(jù)的填充方法研究及實證分析[D];西北大學(xué);2010年

7 李緯;基于GPS的橋梁變形監(jiān)測數(shù)據(jù)處理與分析[D];湖北工業(yè)大學(xué);2010年

8 史鵬飛;基于改進EM算法的混合模型參數(shù)估計及聚類分析[D];西北大學(xué);2009年

9 牟洪洲;建筑沉降監(jiān)測數(shù)據(jù)處理組合模型研究[D];長安大學(xué);2008年

10 袁中萸;多元線性回歸模型中缺失數(shù)據(jù)填補方法的效果比較[D];中南大學(xué);2008年

,

本文編號:2304700

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2304700.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶07764***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com