基于機載LiDAR點云的道路提取方法研究
[Abstract]:Road is an important infrastructure related to the national economy. The timely, accurate and efficient acquisition and updating of road information is of great significance to the construction of "intelligent city". Airborne lidar (LiDAR) technology can quickly obtain high accuracy 3D point cloud data, which provides an accurate and reliable data source for road information extraction. However, the existing methods based on LiDAR point cloud can not accurately extract the contour information of the road. Therefore, in this paper, the high precision coordinate information and echo information of airborne LiDAR point cloud are synthetically used to obtain the road information quickly and accurately, and the following research works are carried out: (1) the structure of airborne LiDAR point cloud data is summarized. Characteristics and data processing process, The principle and main methods of point cloud filtering are summarized. (2) the Clode algorithm and the road extraction method based on fuzzy C-means clustering based on intensity information are introduced; (3) the coordinate and echo information of airborne LiDAR point cloud are synthetically used. Based on the TIN constraint method, the DBSCAN clustering algorithm is introduced to extract the road point cloud, and it is compared with the intensity based fuzzy C-means clustering method. The validity of TIN constraint and clustering method is verified. (4) on the basis of road point cloud extraction, road point raster images are processed by mathematical morphology and Hough transform, and road boundary and centerline extraction are realized. Then the regularized road network information is obtained. (5) with the help of high-resolution remote sensing images, the extraction results are analyzed and analyzed by visual interpretation, and the accuracy and completeness are introduced. In order to verify the validity and reliability of the method used to extract road point cloud and road network feature information, three indexes of total quality are evaluated. The research shows that it is feasible to extract the road by combining the 3D coordinates and echo information of LiDAR point cloud. The experimental results show that the method combining TIN constraint and DBSCAN clustering can remove a large number of road misdivision points and better preserve the road point cloud. On this basis, the road raster images are processed by mathematical morphology and Hough transform. More complete road network feature information can be obtained. The research work of this paper has certain reference value for obtaining and updating road information in the construction of "Wisdom City".
【學位授予單位】:西南交通大學
【學位級別】:碩士
【學位授予年份】:2013
【分類號】:P225.2
【參考文獻】
相關(guān)期刊論文 前10條
1 劉洋;;基于數(shù)學形態(tài)學方法的街道數(shù)據(jù)提取算法[J];北京測繪;2007年03期
2 王永剛;李二森;王忠豐;陳密密;;改進的Hough變換在機場跑道檢測中的應(yīng)用[J];測繪科學;2009年06期
3 顧俊凱;劉聰;崔建軍;魏宏安;;基于LiDAR數(shù)據(jù)的城市道路提取與重建[J];測繪科學;2010年04期
4 曾靜靜;盧秀山;王健;楊書大;;基于LIDAR回波信息的道路提取[J];測繪科學;2011年02期
5 劉春閣;;基于自適應(yīng)中值濾波和改進Hough變換的直線提取[J];測繪科學;2011年06期
6 張熠斌;隋立春;曲佳;柳艷;;基于數(shù)學形態(tài)學算法的機載LiDAR點云數(shù)據(jù)快速濾波[J];測繪通報;2009年05期
7 龔亮;張永生;李正國;包全福;;基于強度信息聚類的機載LiDAR點云道路提取[J];測繪通報;2011年09期
8 王濤;楊建思;廖明生;;從機載激光掃描數(shù)據(jù)中提取道路[J];測繪信息與工程;2006年05期
9 馮琰;郭容寰;程遠達;;基于機載LIDAR技術(shù)快速建立3維城市模型研究[J];測繪與空間地理信息;2008年04期
10 杜靈通;韓秀麗;;基于數(shù)字地球思想的數(shù)字城市研究[J];地理空間信息;2007年01期
相關(guān)博士學位論文 前2條
1 周曉明;機載激光雷達點云數(shù)據(jù)濾波算法的研究與應(yīng)用[D];解放軍信息工程大學;2011年
2 任自珍;基于等高線特征分析的LiDAR建筑物與道路提取[D];西南交通大學;2009年
相關(guān)碩士學位論文 前10條
1 吳昊;單幅模糊圖像編輯技術(shù)研究[D];安徽大學;2011年
2 曾靜靜;基于LiDAR點云與CCD影像的建筑物特征提取[D];山東科技大學;2011年
3 龔亮;機載LiDAR點云數(shù)據(jù)分類技術(shù)研究[D];解放軍信息工程大學;2011年
4 徐俊;復(fù)雜背景下人臉檢測研究[D];南京工業(yè)大學;2006年
5 周彬;基于數(shù)學形態(tài)學的圖像處理算法研究[D];華北電力大學(北京);2008年
6 趙軻;路面裂縫圖像自動識別系統(tǒng)研究[D];長安大學;2009年
7 董丹煌;基于多維數(shù)據(jù)可聽化的視障者行走輔助系統(tǒng)研究[D];浙江大學;2010年
8 周哲;基于LIDAR數(shù)據(jù)的DLG生產(chǎn)與質(zhì)量控制技術(shù)研究[D];西南交通大學;2012年
9 郎悟靈;基于改進的形態(tài)學濾波與區(qū)域增長法的建筑物點云數(shù)據(jù)提取方法研究[D];西南交通大學;2012年
10 劉士程;基于LiDAR數(shù)據(jù)提取建筑物頂面輪廓線方法研究[D];西南交通大學;2012年
,本文編號:2264605
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2264605.html