顧及空間分異性的回歸模型研究
[Abstract]:Because geographical entities have spatial correlation and spatial heterogeneity widely, but the traditional regression model is global, it is assumed that there is no correlation and spatial heterogeneity among geographical entities, so the fitting accuracy is low. Taking housing price as an example, this paper analyzes the spatial autocorrelation and spatial heterogeneity of housing price data by means of exploratory spatial data analysis, and discusses its space-time evolution characteristics. Aiming at the problems existing in the traditional spatial autoregressive model, the spatial autoregressive model with the distance weight matrix instead of the spatial adjacent matrix is tried and experimented, which provides a new direction for the weight selection of the spatial autoregressive model. Then, a geo-weighted autoregressive model which takes spatial correlation and heterogeneity into account is put forward. On the basis of this, time factor is brought into the model, and space-time geo-weighted regression model is introduced into the regression model of housing price data. Thus, the spatial heterogeneity and temporal characteristics of spatial entities are solved. The main research contents and results are as follows: (1) aiming at the spatial autocorrelation and spatial heterogeneity of geographical entities, this paper uses the global Moran index to measure the degree of autocorrelation. The autocorrelation model of local data is explored by using local Moran index, and then the spatial heterogeneity of geographical entities is tested by semi-variable function. (2) the spatial weight matrix based on distance reciprocal and Gao Si kernel function is taken as an example in this paper. The possibility of distance weight matrix replacing spatial adjacent matrix is studied. Compared with the traditional spatial autoregressive model, the autoregressive model based on the reciprocal spatial weight matrix of distance and the autoregressive model based on Gao Si weight matrix improve the fitting accuracy by 0.08 and 0.11 respectively. (3) the spatial autocorrelation is proposed. And spatial heterogeneity, a geo-weighted autoregressive model, The autoregressive term is added on the basis of the traditional geographical weighted model. The main contents include the two-step least square estimation of the model and the selection of optimal spatial bandwidth by CV method. Compared with the traditional spatial autoregressive model and geo-weighted regression model, the fitting accuracy is improved by 0.16 and 0.07. (4) the time factor is added to the geo-weighted regression model, and the spatio-temporal geo-weighted regression model is constructed. The main processes are the establishment of space-time kernel function and the selection of space-time factors. The analysis of variance, regression coefficient and goodness of fit of experimental results are carried out. The experimental results show that the space-time geographical weighted regression model has the best performance in terms of sum of square of residuals, mean square error and goodness of fit.
【學(xué)位授予單位】:山東農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P208
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄭曉燕;周鵬;;武漢市房價(jià)的空間分布格局及其影響因素分析[J];國土與自然資源研究;2016年02期
2 郭雙;魏傳華;;空間自回歸模型的變量選擇[J];中央民族大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年03期
3 孫倩;湯放華;;基于空間擴(kuò)展模型和地理加權(quán)回歸模型的城市住房價(jià)格空間分異比較[J];地理研究;2015年07期
4 高麗群;;時(shí)空地理加權(quán)回歸模型的擬合分析[J];哈爾濱師范大學(xué)自然科學(xué)學(xué)報(bào);2015年03期
5 王新剛;孔云峰;;城市住房價(jià)格局部線性地理加權(quán)回歸分析——以湖北省黃石市為例[J];中國土地科學(xué);2015年03期
6 張俊峰;張安錄;;武漢城市圈土地資源空間異質(zhì)性及其效應(yīng)分析[J];農(nóng)業(yè)現(xiàn)代化研究;2014年04期
7 陳紹寬;韋偉;毛保華;關(guān)偉;;基于改進(jìn)時(shí)空Moran’s I指數(shù)的道路交通狀態(tài)特征分析[J];物理學(xué)報(bào);2013年14期
8 李春紅;張可娟;文利霞;;基于空間自回歸模型的中部經(jīng)濟(jì)增長分析[J];西南大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年11期
9 蘭峰;張媛;;商品住宅價(jià)格上漲的空間自回歸模型及其實(shí)證[J];統(tǒng)計(jì)與決策;2012年13期
10 魏傳華;胡晶;吳喜之;;空間自相關(guān)地理加權(quán)回歸模型的估計(jì)[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2010年22期
相關(guān)博士學(xué)位論文 前5條
1 曾暉;城市住宅價(jià)格時(shí)空分布規(guī)律研究[D];南京林業(yè)大學(xué);2012年
2 黃硯玲;地理加權(quán)空間經(jīng)濟(jì)計(jì)量模型的GMM估計(jì)及區(qū)域金融發(fā)展收斂性實(shí)證研究[D];華南理工大學(xué);2012年
3 張娟鋒;住宅價(jià)格與土地價(jià)格的城市間差異及其決定因素研究[D];浙江大學(xué);2008年
4 覃文忠;地理加權(quán)回歸基本理論與應(yīng)用研究[D];同濟(jì)大學(xué);2007年
5 溫海珍;城市住宅的特征價(jià)格:理論分析與實(shí)證研究[D];浙江大學(xué);2004年
相關(guān)碩士學(xué)位論文 前4條
1 李琪;時(shí)空加權(quán)回歸模型的參數(shù)估計(jì)及其應(yīng)用研究[D];蘭州理工大學(xué);2014年
2 施雅娟;基于空間Durbin模型的城市住宅特征價(jià)格研究[D];浙江大學(xué);2013年
3 張可娟;空間自回歸模型的研究與應(yīng)用[D];廣西大學(xué);2012年
4 董智勇;深圳住宅價(jià)格影響因素實(shí)證研究[D];浙江大學(xué);2006年
,本文編號(hào):2260762
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2260762.html