基于地表負載理論反演地心運動
本文選題:CGCS2000 + 地心運動 ; 參考:《遼寧工程技術(shù)大學》2014年碩士論文
【摘要】:自20世紀80年代,隨著空間大地測量技術(shù)(VLBI、SLR、LLR和DORIS等)的迅猛發(fā)展,特別是全球?qū)Ш叫l(wèi)星系統(tǒng)(GNSS)技術(shù)的日臻成熟,建立和維持全球/區(qū)域地心坐標系統(tǒng)己經(jīng)成為現(xiàn)實。地心坐標系統(tǒng)的原點位于總地球橢球中心(地球質(zhì)心),橢球旋轉(zhuǎn)軸指向協(xié)議地極,起始大地子午面與零子午面重合,即x和z軸的定向由某一歷元的EOP確定,y軸與x軸和z軸構(gòu)成空間右手直角坐標系。由于地球上發(fā)生的運動和形變十分復雜,因此我們只能在一定量級上對一些影響較大且有規(guī)律的因素加以模擬并改正,從而建立并維持一個達到一定精度的地球參考框架。以ITRF為代表的高精度地心參考框架的維持需要考慮板塊運動(主要沿水平方向),冰期后地殼均衡調(diào)整(主要沿垂直方向),地殼構(gòu)造形變,地表負載變化以及地球質(zhì)心運動。地球質(zhì)心(以下簡稱地心)是指整個地球系統(tǒng)的質(zhì)量中心CM(center-of-mass),包括固體地球和覆蓋在固體地球表面的液體層(包括海洋、大氣、陸地上的河流、湖泊及冰川等)。地心運動是由地球各圈層的物質(zhì)運動所引起的,全球大氣、海洋和地表水的季節(jié)性變化是地球質(zhì)心周年運動的主要地球物理機制,因此可通過這些地球物理因素的季節(jié)性變化來較好地反演地心的周年運動。此外,地心運動還有長周期分量,這是由于冰期后地殼均衡調(diào)整所引起的。因為地心坐標系統(tǒng)的原點定義在地心,地面點的坐標是相對于地心的位置確定的,所以地心的位置變化必然會引起地面點坐標的改變,地心運動將成為動態(tài)地心參考框架維持中需要考慮的重要因素。本文基于地表負載理論,分別利用IGS所提供的全球范圍內(nèi)的IGS05框架點的位移、ECCO模型所提供全球范圍的分辨率為1.O°×1.O°的海底壓強數(shù)據(jù)和NCEP所提供的全球范圍的分辨率為2.5°×2.5°的大氣負載數(shù)據(jù),研究地表質(zhì)量負載變化所引起的固體地球形變,以及由此所產(chǎn)生的地表重力場的變化,進而反演得到了近10年和12年地心位置變化時間序列,并利用功率譜分析的方法探測了地心運動的周期項,最后分別擬合得到了地心運動年周期項的振幅和相位。
[Abstract]:Since the 1980s, with the rapid development of space geodetic technology (VLBIN SLRLLR and DORIS etc.), especially the global navigation satellite system (GNSS) technology, the establishment and maintenance of global / regional geocentric coordinate system has become a reality. The origin of the geocentric coordinate system is located at the center of the ellipsoid of the total earth (the center of the earth's mass). The axis of rotation of the ellipsoid points to the agreement of the earth pole, and the initial meridional plane coincides with the zero meridional plane. In other words, the orientation of x and z axis is determined by EOP of a certain epoch to form a right-hand coordinate system with x axis and z axis. Because the movement and deformation on the earth are very complex, we can only simulate and correct some influential and regular factors in a certain order of magnitude, so as to establish and maintain a frame of reference for the earth with certain precision. The maintenance of high precision geocentric reference frame represented by ITRF needs to consider plate movement (mainly along horizontal direction), postglacial crustal equalization adjustment (mainly along vertical direction), crustal tectonic deformation, surface load change and earth centroid movement. Earth centroid (hereinafter referred to as geocentric) refers to the mass center CM (center-of-mass) of the whole earth system, including solid earth and liquid layer covering the surface of solid earth (including ocean, atmosphere, rivers, lakes and glaciers on land, etc.). The geocentric motion is caused by the movement of matter in every layer of the earth, and the seasonal variation of the global atmosphere, ocean and surface water is the main geophysical mechanism of the annual motion of the earth's centroid. Therefore, the seasonal variation of these geophysical factors can be used to better invert the annual motion of the geocentric. In addition, the geocentric movement has a long period component, which is caused by the postglacial crustal equilibrium adjustment. Because the origin of the geocentric coordinate system is defined in the geocentric, the coordinate of the ground point is determined relative to the geocentric position, so the change of the geocentric position will inevitably lead to the change of the ground point coordinate. Geocentric motion will be an important factor to be considered in the maintenance of dynamic geocentric reference frame. This paper is based on the theory of surface load. Using the global IGS05 frame point displacement and ECCO model provided by IGS, respectively, the global pressure data with a resolution of 1.0 擄脳 1.O 擄and the atmospheric load data with a global resolution of 2.5 擄脳 2.5 擄provided by NCEP are obtained, respectively. The deformation of solid earth caused by the change of surface mass load and the change of ground gravity field are studied, and the time series of geocentric position change in recent 10 and 12 years are obtained. The periodic term of the geocentric motion is detected by power spectrum analysis, and the amplitude and phase of the annual period term of the geocentric motion are obtained respectively.
【學位授予單位】:遼寧工程技術(shù)大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:P228.4
【參考文獻】
相關(guān)期刊論文 前10條
1 陳醒;程鵬飛;成英燕;范文濤;王曉明;王福麗;;基于河北CORS網(wǎng)的地殼垂直運動速度場模型研究[J];大地測量與地球動力學;2013年04期
2 程鵬飛;成英燕;秘金鐘;張鵬;蔣志浩;王華;;CGCS2000板塊模型構(gòu)建[J];測繪學報;2013年02期
3 彭鵬;朱耀仲;鐘敏;閆昊明;康開軒;;全球水質(zhì)量遷移對海平面空間模式周年變化的影響[J];地球物理學報;2013年03期
4 魏娜;施闖;劉經(jīng)南;;利用GPS數(shù)據(jù)反演地心運動[J];武漢大學學報(信息科學版);2011年04期
5 宋淑麗;朱文耀;熊福文;高峻;;毫米級地球參考框架的構(gòu)建[J];地球物理學報;2009年11期
6 楊元喜;;2000中國大地坐標系[J];科學通報;2009年16期
7 張西光;呂志平;;論地球參考框架的維持[J];測繪通報;2009年05期
8 郭金運;韓延本;黃金維;;由CHAMP衛(wèi)星監(jiān)測的地球質(zhì)心運動分析[J];中國科學(G輯:物理學 力學 天文學);2008年10期
9 陳俊勇;;中國現(xiàn)代大地基準——中國大地坐標系統(tǒng)2000(CGCS 2000)及其框架[J];測繪學報;2008年03期
10 程鵬飛;楊元喜;李建成;孫漢榮;秘金鐘;;我國大地測量及衛(wèi)星導航定位技術(shù)的新進展[J];測繪通報;2007年02期
相關(guān)博士學位論文 前2條
1 黃海蘭;利用ICESat和GRACE衛(wèi)星觀測數(shù)據(jù)確定極地冰蓋變化[D];武漢大學;2011年
2 王慶賓;動力法反演地球重力場模型研究[D];解放軍信息工程大學;2009年
相關(guān)碩士學位論文 前2條
1 劉立;負載潮對我國沿海地區(qū)精密定位的影響研究[D];中國測繪科學研究院;2011年
2 高樂;CGCS2000板塊運動模型的建立[D];山東科技大學;2011年
,本文編號:2114290
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2114290.html