精密單點(diǎn)定位理論與方法研究
本文選題:衛(wèi)星導(dǎo)航系統(tǒng) + 精密單點(diǎn)定位。 參考:《國防科學(xué)技術(shù)大學(xué)》2015年博士論文
【摘要】:精密單點(diǎn)定位(PPP)集成了標(biāo)準(zhǔn)單點(diǎn)定位和差分定位的優(yōu)點(diǎn),利用全球若干跟蹤站觀測數(shù)據(jù)計(jì)算得到的精密星歷和鐘差,對(duì)單臺(tái)接收機(jī)測量的相位和偽距觀測值進(jìn)行非差數(shù)據(jù)處理,能達(dá)到厘米級(jí)的定位精度。目前,精密單點(diǎn)定位面臨的主要挑戰(zhàn)是其相對(duì)較長的初始化時(shí)間,通常需要20分鐘以上的時(shí)間才能使浮點(diǎn)解收斂到厘米級(jí)的定位精度,限制了其實(shí)時(shí)應(yīng)用?焖俅_定非差整周模糊度,加快精密單點(diǎn)定位收斂速度,能大大改進(jìn)精密單點(diǎn)定位的性能,使其得到更廣泛的應(yīng)用。在此背景下,本文從非差模糊度整數(shù)特性恢復(fù)、電離層延遲提取以及偽距多徑誤差消除三方面著手,進(jìn)行了如下研究:(1)根據(jù)接收機(jī)載波相位測量原理分析了接收機(jī)載波小數(shù)相位偏差的形成機(jī)理及變化特性。理論分析與實(shí)驗(yàn)數(shù)據(jù)表明,小數(shù)相位偏差具有長期穩(wěn)定性,與信號(hào)失鎖和本地時(shí)間調(diào)整無關(guān),其開機(jī)特性與開機(jī)時(shí)本地時(shí)刻整秒對(duì)應(yīng)的射頻本振的相位有關(guān)。在接收機(jī)設(shè)計(jì)上可以采用整數(shù)倍頻法、相位再同步、射頻采樣等方案來避免接收機(jī)小數(shù)相位偏差的開機(jī)變化。(2)提出一種利用參考站網(wǎng)絡(luò)估計(jì)衛(wèi)星和接收機(jī)小數(shù)相位偏差的改進(jìn)方法。其中寬巷模糊度的獲取采用非組合PPP估計(jì)得到的雙頻原始模糊度作差得到,與傳統(tǒng)利用Melbourne-Wubbena組合觀測值確定寬巷模糊度方法相比,寬巷小數(shù)相位偏差的估計(jì)精度提高了10%。此外,非組合PPP中將垂向電離層延遲而非斜向電離層延遲作為參數(shù)估計(jì),寬巷小數(shù)相位偏差的估計(jì)精度改善了6%。最后應(yīng)用參考站估計(jì)的小數(shù)相位偏差改正進(jìn)行了模糊度解算,固定解與浮點(diǎn)解相比定位精度有明顯提高,其中東向誤差改進(jìn)最顯著(約41%)。(3)改進(jìn)了利用雙頻PPP提取高精度電離層延遲的方法。為避免建模誤差,不采用電離層薄層模型分離差分碼偏差,而通過星間單差消除接收機(jī)差分碼偏差的影響。此外,利用區(qū)域參考網(wǎng)估計(jì)的小數(shù)相位偏差改正修正非差模糊度小數(shù)部分,然后進(jìn)行模糊度解算。模糊度固定后,雙頻PPP電離層延遲提取的單天平均精度由浮點(diǎn)解的3.84cm提高到模糊度固定解的1.46cm。(4)提出了利用單頻PPP加密雙頻提取星間單差電離層延遲的方法。對(duì)單頻觀測量進(jìn)行對(duì)流層延遲改正、小數(shù)相位偏差改正及恒星日濾波偽距多徑消除后,可以利用星間單差偽距-相位無電離層組合觀測量來固定單頻星間單差載波相位模糊度,從而得到基于相位觀測值的星間單差電離層延遲。理論分析與實(shí)驗(yàn)表明,模糊度固定后,單頻PPP提取星間單差電離層延遲單天平均精度達(dá)1.74cm,與雙頻PPP法精度相當(dāng)。從而可以利用單頻接收機(jī)來加密區(qū)域電離層輔助參考網(wǎng),減少網(wǎng)絡(luò)布設(shè)成本。(5)針對(duì)衛(wèi)星軌道周期的差異,提出了基于衛(wèi)星視角(仰角和方位角)的恒星日濾波方法,對(duì)每顆衛(wèi)星每個(gè)歷元根據(jù)視角目標(biāo)函數(shù)確定恒星日濾波的周期,精細(xì)了傳統(tǒng)恒星日濾波方法,有效消除了偽距多徑誤差。本文應(yīng)用恒星日濾波方法改進(jìn)了實(shí)時(shí)電離層延遲提取精度和準(zhǔn)靜態(tài)站的動(dòng)態(tài)定位精度,其中實(shí)時(shí)電離層提取單天誤差的平均值從0.185m降為0.028m,動(dòng)態(tài)定位精度東北天方向分別提高了69.2%、72.3%、27.6%,驗(yàn)證了該算法的有效性。
[Abstract]:The precision single point positioning (PPP) integrates the advantages of standard single point positioning and differential positioning. The precise ephemeris and clock difference calculated from the observational data of several tracking stations in the world are used to process the phase and pseudo range observations measured by a single receiver, which can reach the centimeter level positioning accuracy. At present, the precision single point positioning is facing the main position. In order to challenge its relatively long initialization time, it usually takes more than 20 minutes to make the floating-point solution converge to the centimeter level positioning accuracy and limit the actual time application. It can quickly determine the non differential integer ambiguity and speed up the convergence speed of the precise single point positioning, and can greatly improve the performance of the precise single point positioning. In this context, the following studies are carried out from the following three aspects: the restoration of the integer characteristic of the non differential ambiguity, the extraction of the ionosphere delay and the elimination of the pseudo range multipath error. (1) the formation mechanism and the change characteristics of the carrier phase deviation of the receiver carrier are analyzed according to the principle of carrier phase measurement of the receiver. It is not related to the signal locking and local time adjustment, and its opening characteristic is related to the phase of the radio frequency local oscillator corresponding to the local moment at the local time. The receiver design can use the integer doubling, phase resynchronization and RF sampling to avoid the opening of the receiver decimal phase deviation. (2) (2) an improved method of estimating the phase deviation of the decimal fraction of the satellite and the receiver by using the network of reference stations is proposed. The acquisition of the width of the width of the wide lane is obtained by using the original ambiguity of the dual frequency obtained by the non combinatorial estimation. Compared with the traditional method of determining the width of the width of the wide alley with the traditional combination observation value, the width of the width of the wide alley is obtained. The estimation accuracy of the bit deviation is improved by 10%.. The vertical ionospheric delay and not the oblique ionospheric delay are used as parameter estimation in the non composite PPP. The estimation accuracy of the small number phase deviation in the wide lane is improved by 6%.. The resolution of the decimal phase deviation correction in the reference station is calculated. The fixed solution is compared with the floating point solution. The east direction error is improved significantly (about 41%). (3) the method of extracting high precision ionospheric delay using dual frequency PPP is improved. In order to avoid modeling error, the difference code deviation is separated from the ionospheric thin layer model, and the difference of the differential code of the receiver is eliminated by the single difference between the stars. In addition, the regional reference network is used to estimate the difference. The decimal phase deviation correction corrects the fractional part of the non difference ambiguity and then calculates the ambiguity. After the fuzzy degree is fixed, the single day average precision of the double frequency PPP ionospheric delay extraction is raised from the floating point 3.84cm to the 1.46cm. (4) of the fuzzy degree fixed solution. The method is proposed to extract the INTERSTAR single difference ionospheric delay by single frequency PPP encrypted double frequency. The single frequency measurement for tropospheric delay correction, decimal phase deviation correction and stellar diurnal filtering pseudo range multipath elimination can be used to fix the single difference carrier phase ambiguity between single frequency satellites using the INTERSTAR single difference pseudo range and phase unionospheric combination view, thus obtaining the INTERSTAR single difference ionospheric delay based on the phase values. The experiment shows that the single frequency PPP extraction of single frequency single difference ionospheric delay is 1.74cm and the accuracy is equal to the double frequency PPP method. The single frequency receiver can be used to encrypt the regional ionospheric auxiliary reference network and reduce the network layout cost. (5) in view of the difference of the satellite orbit cycle, the satellite angle of view (elevation angle) is proposed. The method of stellar daily filtering is used to determine the period of Star daily filtering for each satellite based on the target function of the angle of view. The traditional star day filtering method is fine. The pseudo range multipath error is eliminated effectively. This paper uses the star day filtering method to improve the precision of the real-time ionization layer delay extraction and the dynamic positioning precision of the quasi static station. The average value of the real-time ionospheric extraction single day error is reduced from 0.185m to 0.028m, and the dynamic positioning accuracy is increased by 69.2%, 72.3%, and 27.6% respectively. The validity of the algorithm is verified.
【學(xué)位授予單位】:國防科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:P228.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李進(jìn)祿;;精密單點(diǎn)定位技術(shù)應(yīng)用淺析[J];測繪與空間地理信息;2009年03期
2 陸賢東;;精密單點(diǎn)定位技術(shù)的相關(guān)理論及其應(yīng)用[J];礦山測量;2012年02期
3 王劍;張書畢;鄧軍;;精密單點(diǎn)定位在城市勘測應(yīng)用中的展望[J];城市勘測;2007年01期
4 郝明;歐吉坤;郭建鋒;袁運(yùn)斌;;一種加速精密單點(diǎn)定位收斂的新方法[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2007年10期
5 萬程輝;李霞;杜向峰;;淺談精密單點(diǎn)定位技術(shù)的應(yīng)用[J];江西測繪;2008年01期
6 暢毅;魏文宏;張建恩;尹柱庭;;靜態(tài)精密單點(diǎn)定位技術(shù)在物探測量中的應(yīng)用初探[J];物探裝備;2008年03期
7 晉軍;武向輝;伍發(fā)康;;基于主成分分析的動(dòng)態(tài)精密單點(diǎn)定位結(jié)果分析[J];山西建筑;2009年25期
8 李連江;鞠立華;梁延強(qiáng);;精密單點(diǎn)定位技術(shù)在物探測量中應(yīng)用[J];石油儀器;2009年04期
9 張萬強(qiáng);趙俊三;付亞梁;;精密單點(diǎn)定位技術(shù)的應(yīng)用研究[J];黑龍江科技信息;2010年04期
10 唐秋祥;;精密單點(diǎn)定位技術(shù)在像控測量中的應(yīng)用[J];城市勘測;2010年01期
相關(guān)會(huì)議論文 前10條
1 陳俊平;張益澤;王君剛;楊賽男;董大南;曲偉菁;吳斌;;多模精密單點(diǎn)定位中的參數(shù)相關(guān)性及其統(tǒng)一參數(shù)模型[A];第五屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)論文集-S3 精密定軌與精密定位[C];2014年
2 李瑋;程鵬飛;秘金鐘;;非組合精密單點(diǎn)定位的區(qū)域電離層延遲提取及精度評(píng)定[A];第二屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集[C];2011年
3 易重海;朱建軍;陳永奇;戴吾蛟;;一種區(qū)域性實(shí)時(shí)精密單點(diǎn)定位方法[A];第一屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)論文集(下)[C];2010年
4 董洋洋;高鵬飛;吳倩;;實(shí)時(shí)非差精密單點(diǎn)定位精度分析[A];第三屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集——S03精密定軌與精密定位[C];2012年
5 李輝;李建文;王慶賢;李偉峰;李軍正;朱建華;;星歷精度對(duì)動(dòng)態(tài)GPS精密單點(diǎn)定位的精度影響分析[A];中國測繪學(xué)會(huì)2010年學(xué)術(shù)年會(huì)論文集[C];2010年
6 李敏;;北斗衛(wèi)星導(dǎo)航系統(tǒng)精密單點(diǎn)定位[A];第三屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集——S03精密定軌與精密定位[C];2012年
7 廣偉;袁海波;董紹武;;精密單點(diǎn)定位在NTSC時(shí)間傳遞中的應(yīng)用[A];第三屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集——S04原子鐘技術(shù)與時(shí)頻系統(tǒng)[C];2012年
8 高成發(fā);陳偉榮;;基于星間差分的GPS精密單點(diǎn)定位技術(shù)研究[A];第三屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集——S03精密定軌與精密定位[C];2012年
9 吳菲;高成發(fā);;精密單點(diǎn)定位中衛(wèi)星鐘差插值問題的探討[A];中國測繪學(xué)會(huì)第九次全國會(huì)員代表大會(huì)暨學(xué)會(huì)成立50周年紀(jì)念大會(huì)論文集[C];2009年
10 李正品;肖勝昌;;精密單點(diǎn)定位GPS在東南亞水電工程規(guī)劃測量中的應(yīng)用[A];中國水力發(fā)電工程學(xué)會(huì)第四屆地質(zhì)及勘探專業(yè)委員會(huì)第二次學(xué)術(shù)交流會(huì)論文集[C];2010年
相關(guān)重要報(bào)紙文章 前1條
1 石壬;何為精密單點(diǎn)定位[N];中國測繪報(bào);2007年
相關(guān)博士學(xué)位論文 前6條
1 李增科;多源傳感器增強(qiáng)的精密單點(diǎn)定位與慣性測量組合導(dǎo)航系統(tǒng)[D];中國礦業(yè)大學(xué);2015年
2 鄭彬;精密單點(diǎn)定位理論與方法研究[D];國防科學(xué)技術(shù)大學(xué);2015年
3 易重海;實(shí)時(shí)精密單點(diǎn)定位理論與應(yīng)用研究[D];中南大學(xué);2011年
4 徐宗秋;基于多導(dǎo)航衛(wèi)星系統(tǒng)的精密單點(diǎn)定位模型與方法研究[D];遼寧工程技術(shù)大學(xué);2013年
5 聶建亮;GPS精密單點(diǎn)定位算法及故障診斷研究[D];長安大學(xué);2010年
6 卞和方;區(qū)域增強(qiáng)PPP技術(shù)及其在礦區(qū)變形監(jiān)測應(yīng)用研究[D];中國礦業(yè)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 勾朝君;BDS/GPS組合精密單點(diǎn)定位方法研究與實(shí)現(xiàn)[D];北京建筑大學(xué);2015年
2 臧楠;BDS/GNSS精密單點(diǎn)定位算法研究[D];長安大學(xué);2015年
3 董寶玉;GPS精密單點(diǎn)定位關(guān)鍵算法研究與實(shí)現(xiàn)[D];中國礦業(yè)大學(xué);2015年
4 何忱遠(yuǎn);基于北斗雙頻的非差高精度定位算法的實(shí)現(xiàn)[D];電子科技大學(xué);2015年
5 付婧雯;北斗導(dǎo)航系統(tǒng)精密單點(diǎn)定位技術(shù)研究[D];北京理工大學(xué);2016年
6 程良濤;嵌入式GPS精密單點(diǎn)定位技術(shù)研究[D];東南大學(xué);2015年
7 靳曉東;基于整數(shù)鐘固定解的GPS/BDS組合精密單點(diǎn)定位研究[D];東南大學(xué);2016年
8 石昊;北斗二代非差相位精密單點(diǎn)定位方法研究[D];遼寧工程技術(shù)大學(xué);2014年
9 趙秀琴;GNSS精密單點(diǎn)定位中精密軌道和鐘差內(nèi)插方法優(yōu)化研究[D];成都理工大學(xué);2016年
10 李兆洋;基于自適應(yīng)卡爾曼濾波的GPS精密單點(diǎn)定位研究[D];西南交通大學(xué);2017年
,本文編號(hào):2105459
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2105459.html