基于原始觀測(cè)值的GNSS統(tǒng)一快速精密數(shù)據(jù)處理方法
本文選題:多系統(tǒng)多頻率 + 原始觀測(cè)值 ; 參考:《武漢大學(xué)》2015年博士論文
【摘要】:全球?qū)Ш叫l(wèi)星系統(tǒng)(Global Navigation Satellite System, GNSS)是二十世紀(jì)人類(lèi)最偉大的科技成果之一,且已經(jīng)在大地測(cè)量、地球動(dòng)力學(xué)以及大氣研究等多個(gè)領(lǐng)域得到廣泛應(yīng)用。近年來(lái),隨著我國(guó)北斗導(dǎo)航定位系統(tǒng)(BDS)二代的全面運(yùn)行、歐洲伽利略系統(tǒng)(GALILEO)的不斷發(fā)展以及美國(guó)GPS系統(tǒng)的現(xiàn)代化,GNSS已經(jīng)從單系統(tǒng)發(fā)展為多系統(tǒng)并存、雙頻服務(wù)發(fā)展為至少三個(gè)頻率服務(wù)的局面,這給目前的GNSS數(shù)據(jù)處理方法帶來(lái)了極大的挑戰(zhàn)。一方面,目前所有公開(kāi)的GNSS產(chǎn)品均是基于無(wú)電離層組合觀測(cè)值或差分觀測(cè)值的數(shù)據(jù)處理方法獲得,然而這種方法己經(jīng)無(wú)法完全滿足當(dāng)前多系統(tǒng)多頻率環(huán)境下的高精度GNSS數(shù)據(jù)處理要求了。首先為了充分利用各個(gè)系統(tǒng)之間的優(yōu)勢(shì),得到更穩(wěn)定可靠的結(jié)果,并為其他用戶(hù)提供兼容統(tǒng)一的改正數(shù)信息,必須將多系統(tǒng)多頻率的數(shù)據(jù)在觀測(cè)值層面進(jìn)行統(tǒng)一處理;其次為了盡可能保留原始觀測(cè)值中的信息,必須在原始觀測(cè)值而不是差分或組合觀測(cè)值上建立觀測(cè)方程。針對(duì)此,本文詳細(xì)研究了一種基于原始觀測(cè)值的數(shù)據(jù)處理方法,任意GNSS系統(tǒng)任意頻率的數(shù)據(jù)均能統(tǒng)一采用這種方法進(jìn)行數(shù)據(jù)處理。另一方面,計(jì)算效率低一直是GNSS領(lǐng)域中未能很好解決的問(wèn)題。即使僅針對(duì)GPS系統(tǒng),采用組合或差分觀測(cè)值進(jìn)行數(shù)據(jù)處理的方法,幾乎目前所有著名GNSS軟件都難以或無(wú)法同時(shí)對(duì)含有數(shù)百甚至上千個(gè)測(cè)站的GNSS網(wǎng)進(jìn)行整網(wǎng)數(shù)據(jù)處理。然而相對(duì)當(dāng)前組合觀測(cè)值或差分觀測(cè)值數(shù)據(jù)處理方法,原始觀測(cè)值數(shù)據(jù)處理方法耗時(shí)更為嚴(yán)重,即使針對(duì)含有約100個(gè)測(cè)站的GNSS網(wǎng),也難以進(jìn)行日常常規(guī)處理。雖然先分子網(wǎng)解算,再合并子網(wǎng)結(jié)果的策略可在一定程度緩解這種矛盾,但由于子網(wǎng)問(wèn)的公共站多次被使用,影響了整網(wǎng)解的嚴(yán)密性。為此,本文提出了一整套能加速GNSS數(shù)據(jù)處理的策略,不僅可使基于無(wú)電離層組合觀測(cè)值的數(shù)據(jù)方法可以在短時(shí)間內(nèi)處理含有數(shù)百甚至上千測(cè)站的GNSS網(wǎng),還能有效加速原始觀測(cè)值數(shù)據(jù)處理。本文的主要工作和貢獻(xiàn)為:(1)歸納總結(jié)了當(dāng)前GNSS數(shù)據(jù)處理方法面臨的挑戰(zhàn);系統(tǒng)地研究了基于原始觀測(cè)值的多系統(tǒng)多頻率GNSS數(shù)據(jù)處理模型;給出了分離鐘差參數(shù)、系統(tǒng)偏差/頻率偏差參數(shù)、DCB參數(shù)等多類(lèi)參數(shù)的方法;討論了電離層參數(shù)、DCB參數(shù),模糊度之間的相關(guān)性;并探討了在不施加電離層時(shí)空約束條件下的模糊度固定方法。(2)利用原始觀測(cè)值數(shù)據(jù)處理方法初步探討了GPS和BDS頻率之間的兼容性。實(shí)驗(yàn)發(fā)現(xiàn):GPS L5的殘差約為L(zhǎng)1/L2殘差的3倍,可達(dá)9~10mm,而且連續(xù)數(shù)天內(nèi)其變化量級(jí)和變化趨勢(shì)基本一致,這意味著GPS L5可能含有某種與L1/L2不兼容的系統(tǒng)偏差。而B(niǎo)DS三個(gè)頻率的殘差均在2-3mm,沒(méi)有發(fā)現(xiàn)類(lèi)似的情況。實(shí)驗(yàn)還發(fā)現(xiàn)L5碼偽距上的DCB估值在數(shù)天甚至一個(gè)月內(nèi)都十分穩(wěn)定,月平均值的標(biāo)準(zhǔn)差優(yōu)于3cm。(3)評(píng)估了在使用兩個(gè)頻率且不施加電離層約束的條件下,基于原始觀測(cè)值的GNSS數(shù)據(jù)處理方法與基于無(wú)電離層組合觀測(cè)值的數(shù)據(jù)處理方法得到的產(chǎn)品的異同。結(jié)果發(fā)現(xiàn)兩種方法計(jì)算得到的軌道、鐘差、對(duì)流層以及系統(tǒng)間偏差均無(wú)明顯差異,這表明當(dāng)使用兩個(gè)頻率且不施加電離層時(shí)空約束時(shí),基于原始觀測(cè)值的數(shù)據(jù)方法與無(wú)電離層組合觀測(cè)值的數(shù)據(jù)方法基本等價(jià)。(4)提出了利用PPP模糊度技術(shù)在統(tǒng)一基準(zhǔn)下生成Carrier-range的新方法,并在此基礎(chǔ)上設(shè)計(jì)了一整套高效率GNSS數(shù)據(jù)處理流程。本文從PPP定位的基本觀測(cè)方程出發(fā),證明了利用單站模糊度技術(shù)在統(tǒng)一基準(zhǔn)下生成Carrier-range的可行性,并設(shè)計(jì)了整套高效率GNSS數(shù)據(jù)流程。主要包括六個(gè)步驟:采用全球均勻分布的適合的網(wǎng)計(jì)算精密軌道和衛(wèi)星鐘差;利用定軌過(guò)程中得到的浮點(diǎn)模糊度計(jì)算衛(wèi)星端的UPD;固定衛(wèi)星軌道和鐘差,逐一測(cè)站進(jìn)行PPP定位,并利用生成的UPD進(jìn)行單站模糊度固定;然后將載波相位觀測(cè)值轉(zhuǎn)換成Carrier-range,并將其寫(xiě)入新的RINEX中;重復(fù)上兩步直至所有測(cè)站均生成了新的RINEX文件;利用含有Carrier-range的新RINEX文件進(jìn)行最終的網(wǎng)解。最終網(wǎng)解不再需要估計(jì)或者僅需要估計(jì)少量模糊度,其計(jì)算效率將大幅度提高。最終解算可采取兩種模式,一種僅采用Carrier-range進(jìn)行計(jì)算,此時(shí)UPD參數(shù)將完全被衛(wèi)星鐘差吸收,不再需要估計(jì),衛(wèi)星鐘差也由于吸收了UPD,成了“整數(shù)鐘”。另一種方法是同時(shí)采用偽距和Carrier-range,此時(shí)為了使偽距和Carrier-range鐘差定義一致,在Carrier-range上需要估計(jì)一組UPD參數(shù),此時(shí)鐘差絕對(duì)基準(zhǔn)由偽距決定,與IGS定義保持一致。(5)統(tǒng)計(jì)分析了UPD參數(shù)的穩(wěn)定性,提出了UPD參數(shù)估計(jì)方法。通過(guò)對(duì)實(shí)驗(yàn)數(shù)據(jù)的分析,發(fā)現(xiàn)非經(jīng)歷地影的BLOCK IIA GPS衛(wèi)星的窄巷UPD在24h內(nèi)變化平穩(wěn),其一天平均值的標(biāo)準(zhǔn)差大都不大于0.05周,而經(jīng)歷地影的BLOCK IIA衛(wèi)星在出地影后,窄巷UPD可能發(fā)生0.3~0.4周的跳變。若去掉這種跳變,其天均值的標(biāo)準(zhǔn)差降為0.03~0.04左右。因此本文建議在求解最終估計(jì)UPD的時(shí)候,至少需要對(duì)經(jīng)歷地影的BLOCK IIA衛(wèi)星在出地影后額外估計(jì)一個(gè)UPD參數(shù)。(6)發(fā)現(xiàn)并指出Carrier-range可改善數(shù)據(jù)的連續(xù)性,進(jìn)而可提高結(jié)果質(zhì)量。通過(guò)比較分析和實(shí)例驗(yàn)證,發(fā)現(xiàn)相對(duì)于傳統(tǒng)方法,Carrier-range策略具有更好的數(shù)據(jù)連續(xù)性,其等價(jià)于將同一測(cè)站同一衛(wèi)星的所有模糊度均連起來(lái)了,從而擁有更好的數(shù)據(jù)連續(xù)性。實(shí)驗(yàn)發(fā)現(xiàn)采用同樣的數(shù)據(jù),采用Carrier-range策略得到的軌道的天與天之間的重復(fù)軌道RMS值相對(duì)傳統(tǒng)方法提高約3~4mm。(7)提出了加快無(wú)電離層組合觀測(cè)值數(shù)據(jù)處理策略,解決了大規(guī)模GNSS網(wǎng)數(shù)據(jù)處理效率低的難題。實(shí)驗(yàn)發(fā)現(xiàn):當(dāng)解算含有460個(gè)測(cè)站的網(wǎng)時(shí),新策略耗時(shí)僅14分鐘,而傳統(tǒng)策略耗時(shí)約82分鐘,而且新策略所需的計(jì)算時(shí)間隨著測(cè)站數(shù)的增長(zhǎng)近似呈線性增長(zhǎng),而傳統(tǒng)策略耗時(shí)隨著測(cè)站數(shù)增長(zhǎng)近似呈指數(shù)增長(zhǎng)。(8)設(shè)計(jì)了事后和實(shí)時(shí)高頻整數(shù)鐘差的高效率計(jì)算流程,有效提高了事后和實(shí)時(shí)高頻鐘差或“整數(shù)鐘差”計(jì)算的效率。實(shí)驗(yàn)證明,當(dāng)采用約250個(gè)測(cè)站事后計(jì)算一天內(nèi)30s鐘差時(shí),耗時(shí)僅約32分鐘,而當(dāng)采用約200個(gè)測(cè)站實(shí)時(shí)計(jì)算鐘差時(shí),在所有模糊度固定了的情況下,一個(gè)歷元耗時(shí)不到1s,且直接利用Carrier-range計(jì)算的得到的鐘差包含了UPD,可直接用于單站模糊度固定。(9)提出了基于原始觀測(cè)值的數(shù)據(jù)高效處理方法,有效提高了計(jì)算效率,使得采用該方法進(jìn)行數(shù)據(jù)日常常規(guī)處理成為可能。實(shí)驗(yàn)顯示,當(dāng)處理含約100個(gè)測(cè)站的GNSS網(wǎng)時(shí),在不施加電離層時(shí)空約束的情況下,新策略可使單次參數(shù)估計(jì)時(shí)間從97分鐘縮短為31分鐘,在施加一簡(jiǎn)單的電離層時(shí)空約束后,新策略可使單次參數(shù)估計(jì)時(shí)間從387分鐘減少為206分鐘。這表明新策略后可有效加速原始觀測(cè)值的數(shù)據(jù)處理。
[Abstract]:Global Navigation Satellite System (GNSS) is one of the greatest scientific and technological achievements of the twentieth Century, and has been widely used in many fields such as geodetic, geodynamics and atmospheric research. In recent years, with the full operation of the two generation of the Beidou navigation and positioning system (BDS) in China, Galileo, Europe The continuous development of system (GALILEO) and the modernization of the American GPS system, GNSS has developed from a single system to multiple systems, and dual frequency services develop into a situation of at least three frequency services. This brings great challenges to the current GNSS data processing method. On the one hand, all the public GNSS products before the target are based on the ionospheric combination. The observation value or the data processing method of the difference observation value is obtained. However, this method can not fully meet the requirements of high precision GNSS data processing in the current multi system and multi frequency environment. First, in order to make full use of the advantages of each system, we can get more stable and reliable results, and provide a compatible and unified positive number for other users. In order to keep the information in the original observation value as much as possible, it is necessary to establish the observation equation in the original observation value rather than the difference or the combined observation. On the other hand, the low computing efficiency has been a problem that can not be solved well in the field of GNSS. Even for the GPS system, the method of data processing with combined or differential observation values is difficult or impossible for all the famous GNSS software at present. GNSS networks with hundreds or even thousands of stations are processed for whole network data processing. However, relative to the current combined observation values or differential observation data processing methods, the original observation data processing method is more time-consuming. Even for the GNSS network containing about 100 stations, it is difficult to carry out routine routine processing. Although the first molecular network is solved, The strategy of recombining the result of subnet can alleviate this contradiction to a certain extent, but because the public station of the subnet is used many times, it affects the tightness of the whole network solution. Therefore, this paper proposes a set of strategies to speed up the GNSS data processing, which can not only make the data method based on the ionospheric combination observation value can be processed in a short time. GNSS network with hundreds or even thousands of stations can effectively accelerate the processing of original observation data. The main work and contributions of this paper are as follows: (1) the challenges facing the current GNSS data processing methods are summarized and summarized, and the multi system and multi frequency GNSS data processing model based on the original observation value is systematically studied, and the separation of clock difference parameters is given. The methods of multiple parameters such as system deviation / frequency deviation parameters, DCB parameters and other parameters are discussed. The correlation between ionospheric parameters, DCB parameters and fuzziness is discussed, and the fuzzy degree fixing method under the condition of no ionosphere time and space constraints is discussed. (2) a preliminary discussion on the frequency of GPS and BDS by the processing method of the original observation value is made. The experimental results show that the residual difference of GPS L5 is about 3 times of the L1/L2 residual, and it can reach 9 to 10mm, and its variation and change trend are basically the same in a few days, which means that GPS L5 may contain a certain system deviation from L1/L2 incompatibility. The residual of the three frequencies of BDS is all in 2-3mm and no similar situation is found. The experiment also found the L5 code. The DCB estimation on the pseudo range is very stable in several days or even a month. The standard deviation of the monthly mean value is better than that of 3cm. (3), which evaluates the similarities and differences between the GNSS data processing method based on the original observation value and the product based on the data processing method based on the unionospheric combination values in the condition of using two frequencies without applying the ionosphere constraint. It is found that there is no obvious difference in the orbit, clock difference, troposphere and inter system deviation calculated by the two methods, which indicates that the data method based on the original observation value is equivalent to the data square method without ionosphere combined observation when using two frequencies and does not impose the ionospheric spatiotemporal constraints. (4) the PPP fuzziness technique is proposed. A new method of generating Carrier-range under the unified benchmark is designed and a set of high efficiency GNSS data processing flow is designed on this basis. This paper, starting from the basic observation equation of PPP positioning, proves the feasibility of using the single station ambiguity technology to generate Carrier-range under the unified datum, and designs a complete set of high efficiency GNSS data flow. Six steps should be included: calculating the precision orbit and satellite clock difference of the suitable network with a global and uniform distribution; using the floating-point ambiguity obtained in the orbit determination process to calculate the satellite's UPD, fixed satellite orbit and clock difference, PPP positioning one by one, and using the generated UPD to fix the single station ambiguity, and then the carrier phase view. The measured values are converted into Carrier-range, and they are written into the new RINEX; the two steps are repeated until all stations have generated a new RINEX file; the final net solution is made using a new RINEX file containing Carrier-range. The final network solution no longer needs to be estimated or only needs a small amount of Fuzzy degree, and the calculation efficiency will be greatly improved. Two modes can be adopted, one is only Carrier-range, and the UPD parameter will be absorbed completely by satellite clock difference, no longer need to be estimated, the satellite clock difference is also due to the absorption of UPD, the "integer clock". The other method is to use the pseudo distance and Carrier-range at the same time, in order to make the pseudo distance and Carrier-range clock difference definition consistent, It is necessary to estimate a set of UPD parameters on Carrier-range, at this time the absolute datum of the clock difference is determined by the pseudo distance and is consistent with the IGS definition. (5) the stability of the UPD parameters is analyzed statistically and the UPD parameter estimation method is proposed. By the analysis of the experimental data, it is found that the narrow lane UPD in the BLOCK IIA GPS satellite with non experience shadow is stable in 24h. The standard deviation of the mean balance is mostly not more than 0.05 weeks, and the BLOCK IIA satellite in the experience shadow may have a 0.3 to 0.4 week jump in the narrow lane UPD after the out of earth shadow. If this jump is removed, the standard deviation of the mean value is reduced to about 0.03 to 0.04. Therefore, this paper suggests that at least the BLOCK II of the experience is needed when the final estimate of the UPD is solved. The A satellite estimates an additional UPD parameter after the out of earth film. (6) we find and point out that Carrier-range can improve the continuity of the data and improve the quality of the results. Compared with the traditional methods, it is found that the Carrier-range strategy has better data continuity than the traditional method, which is equivalent to that of the same satellite in the same station. The fuzzy degree is connected, and the data continuity is better. It is found that the same data, the RMS value of the orbit between day and day using the Carrier-range strategy is raised about 3 to 4mm. (7) relative to the traditional method, and the data processing strategy of accelerating the non ionospheric combination observation is accelerated, and the large-scale GNSS network is solved. The experimental results show that the new strategy takes only 14 minutes when solving the network with 460 stations, while the traditional strategy takes about 82 minutes, and the time required for the new strategy increases approximately linearly with the increase of the number of stations, while the traditional strategy consumes an approximate exponential growth with the number of stations. (8) design The efficient calculation process of the post and real time high frequency integer clock difference effectively improves the efficiency of the calculation of the clock difference between the post and the real time high frequency clock or the "integer clock difference". The experiment proves that the time consuming time is only about 32 minutes when about 250 stations are used to calculate the 30s clock difference in one day, and when about 200 stations are used to calculate the clock difference in real time, all the fuzzy degrees are found. Under the fixed condition, a calendar time consuming less than 1s, and the clock difference obtained by Carrier-range calculation directly contains UPD, which can be used directly for the fixed ambiguity of single station. (9) a high efficient data processing method based on the original observation value is proposed, which effectively improves the computational efficiency and makes the routine routine processing of the data by this method. The experiment shows that, when the GNSS network containing about 100 stations is processed, the new strategy can shorten the estimated time of single parameter from 97 minutes to 31 minutes without applying the ionosphere spatiotemporal constraints. After applying a simple ionospheric spatiotemporal constraint, the new strategy can reduce the single parameter estimation time from 387 minutes to 206 minutes. The new strategy can effectively accelerate the data processing of the original observation data.
【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:P228.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 閆娜;;江蘇省GNSS連續(xù)運(yùn)行參考站網(wǎng)項(xiàng)目通過(guò)驗(yàn)收[J];測(cè)繪通報(bào);2007年02期
2 ;獲境外專(zhuān)業(yè)機(jī)構(gòu)青睞,合眾思?jí)迅呔獹NSS產(chǎn)品邁入世界前列[J];北京測(cè)繪;2007年02期
3 ;中國(guó)GNSS技術(shù)打破歐美壟斷高精度測(cè)量產(chǎn)品角逐國(guó)際市場(chǎng)[J];江西測(cè)繪;2007年02期
4 ;合眾思?jí)勋@海外定單標(biāo)志中國(guó)GNSS踏上自主創(chuàng)新成果產(chǎn)業(yè)化之路[J];現(xiàn)代測(cè)繪;2007年04期
5 ;十年中海達(dá) 中國(guó)GNSS產(chǎn)業(yè)化十年——中海達(dá)10周年慶典活動(dòng)拉開(kāi)序幕[J];測(cè)繪技術(shù)裝備;2009年03期
6 楊永平;段德磊;;多功能手持GNSS在電力行業(yè)的應(yīng)用[J];電力與電工;2009年03期
7 薄萬(wàn)舉;黃立人;李軍;程增杰;宋兆山;許明元;李文靜;李文一;;GNSS野外檢定場(chǎng)[J];測(cè)繪科學(xué);2009年S1期
8 季宇虹;王讓會(huì);;全球?qū)Ш蕉ㄎ幌到y(tǒng)GNSS的技術(shù)與應(yīng)用[J];全球定位系統(tǒng);2010年05期
9 董春來(lái);周立;史建青;;GNSS多功能實(shí)驗(yàn)室的構(gòu)建與實(shí)踐[J];實(shí)驗(yàn)室研究與探索;2011年02期
10 Zhan Wei;Zhu Shuang;Yang Bo;Wu Yanqiang;Liu Zhiguang;Meng Xiangang;;Effects of the differences between the ITRF2000 and ITRF2005 models in GNSS data processing[J];Geodesy and Geodynamics;2013年04期
相關(guān)會(huì)議論文 前10條
1 張慧君;李孝輝;;GNSS系統(tǒng)時(shí)間偏差及其監(jiān)測(cè)與預(yù)報(bào)[A];2009全國(guó)時(shí)間頻率學(xué)術(shù)會(huì)議論文集[C];2009年
2 ;Supporting capability analysis of present spectrum management resources to GNSS IDM in China[A];第三屆中國(guó)衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集——S01北斗/GNSS導(dǎo)航應(yīng)用[C];2012年
3 朱旭;;全球?qū)Ш叫l(wèi)星系統(tǒng)(GNSS)在空中交通管理中的應(yīng)用進(jìn)展[A];中國(guó)通信學(xué)會(huì)第六屆學(xué)術(shù)年會(huì)論文集(上)[C];2009年
4 董紹武;;GNSS時(shí)間系統(tǒng)及其互操作[A];2009全國(guó)虛擬儀器大會(huì)論文集(二)[C];2009年
5 孫曉波;李冶天;;多模GNSS高精度授時(shí)在電力系統(tǒng)中的應(yīng)用分析[A];經(jīng)濟(jì)發(fā)展方式轉(zhuǎn)變與自主創(chuàng)新——第十二屆中國(guó)科學(xué)技術(shù)協(xié)會(huì)年會(huì)(第四卷)[C];2010年
6 胡曉;高偉;李本玉;;GNSS衛(wèi)星導(dǎo)航系統(tǒng)關(guān)鍵技術(shù)的研究與思考[A];《測(cè)繪通報(bào)》測(cè)繪科學(xué)前沿技術(shù)論壇摘要集[C];2008年
7 高井祥;閆文林;王堅(jiān);;礦山變形災(zāi)害GNSS現(xiàn)代化監(jiān)測(cè)技術(shù)研究[A];《測(cè)繪通報(bào)》測(cè)繪科學(xué)前沿技術(shù)論壇摘要集[C];2008年
8 馬利華;韓延本;;全球衛(wèi)星導(dǎo)航系統(tǒng)(GNSS)概述[A];中國(guó)地球物理學(xué)會(huì)第二十三屆年會(huì)論文集[C];2007年
9 ;A study of ionospheric scintillation effects on Differential GNSS[A];第三屆中國(guó)衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集——S08衛(wèi)星導(dǎo)航模型與方法[C];2012年
10 甄衛(wèi)民;韓超;杜黎明;陳麗;;我國(guó)GNSS開(kāi)放服務(wù)中的干擾檢測(cè)與減緩計(jì)劃[A];第三屆中國(guó)衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集——S01北斗/GNSS導(dǎo)航應(yīng)用[C];2012年
相關(guān)重要報(bào)紙文章 前10條
1 王娜;我GNSS技術(shù)打破國(guó)外壟斷[N];科技日?qǐng)?bào);2007年
2 陶渝;重慶建成國(guó)土資源GNSS網(wǎng)絡(luò)信息系統(tǒng)[N];中國(guó)測(cè)繪報(bào);2011年
3 記者 謝必如 特約記者 白文起 通訊員 陶渝;重慶建成國(guó)土資源GNSS網(wǎng)絡(luò)系統(tǒng)[N];中國(guó)國(guó)土資源報(bào);2011年
4 王巖;包頭用GNSS管理市政布局[N];中國(guó)建設(shè)報(bào);2010年
5 甘勃;“天眼”邁進(jìn)GNSS時(shí)代[N];大眾科技報(bào);2007年
6 王立彬;中國(guó)全球衛(wèi)星導(dǎo)航系統(tǒng),奪下千萬(wàn)美元大單[N];新華每日電訊;2007年
7 通訊員 彭祥榮;“陸態(tài)網(wǎng)”民勤GNSS基準(zhǔn)站投入試運(yùn)行[N];中國(guó)氣象報(bào);2010年
8 記者 裴蕾;測(cè)繪氣象共建GNSS基準(zhǔn)站[N];四川日?qǐng)?bào);2010年
9 王雅麗;實(shí)施國(guó)際化戰(zhàn)略[N];中國(guó)測(cè)繪報(bào);2010年
10 記者 張敏霞 通訊員 王存林;陸態(tài)網(wǎng)沱沱河GNSS基準(zhǔn)站建成并試運(yùn)行[N];格爾木日?qǐng)?bào);2011年
相關(guān)博士學(xué)位論文 前10條
1 江鵬;地基GNSS探測(cè)2D/3D大氣水汽分布技術(shù)研究[D];武漢大學(xué);2014年
2 徐韶光;利用GNSS獲取動(dòng)態(tài)可降水量的理論與方法研究[D];西南交通大學(xué);2014年
3 李磊;基于GNSS的電離層總電子含量的預(yù)測(cè)與應(yīng)用研究[D];大連海事大學(xué);2015年
4 陳良;機(jī)載GNSS/SINS組合精密導(dǎo)航關(guān)鍵技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2013年
5 郭瑤;慣性輔助的高動(dòng)態(tài)GNSS基帶信號(hào)跟蹤技術(shù)[D];國(guó)防科學(xué)技術(shù)大學(xué);2013年
6 張亮;地面復(fù)雜環(huán)境下移動(dòng)三維測(cè)量精度改善方法研究[D];武漢大學(xué);2015年
7 甘雨;GNSS/INS組合系統(tǒng)模型精化及載波相位定位測(cè)姿[D];解放軍信息工程大學(xué);2015年
8 李俊毅;GNSS動(dòng)態(tài)相對(duì)定位算法研究[D];解放軍信息工程大學(xué);2013年
9 任燁;多場(chǎng)景下的GNSS完好性監(jiān)測(cè)方法研究[D];中國(guó)科學(xué)院研究生院(國(guó)家授時(shí)中心);2016年
10 陳華;基于原始觀測(cè)值的GNSS統(tǒng)一快速精密數(shù)據(jù)處理方法[D];武漢大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 劉成;GNSS-R應(yīng)用于測(cè)量表層土壤濕度及軟件設(shè)計(jì)[D];中國(guó)地質(zhì)大學(xué)(北京);2015年
2 高榮祥;基于GNSS信號(hào)的無(wú)源雷達(dá)目標(biāo)探測(cè)研究[D];中國(guó)地質(zhì)大學(xué)(北京);2015年
3 陳聞亞;基于Internet的GNSS高精度位置服務(wù)平臺(tái)研究與實(shí)現(xiàn)[D];西南交通大學(xué);2015年
4 楊晨云鸝;GNSS在地震矩反演中的應(yīng)用研究[D];西南交通大學(xué);2015年
5 張U,
本文編號(hào):2100512
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2100512.html