星載InSAR軌道誤差建模與分析
本文選題:合成孔徑雷達(dá)干涉測(cè)量 + 基線估計(jì); 參考:《中國(guó)地質(zhì)大學(xué)(北京)》2017年碩士論文
【摘要】:星載合成孔徑雷達(dá)干涉測(cè)量(Synthetic Aperture Radar Interferometry,InSAR)是一種重要的大范圍形變監(jiān)測(cè)技術(shù)。不同誤差源會(huì)使測(cè)量結(jié)果產(chǎn)生偏差,當(dāng)形變作為主要信息時(shí),InSAR數(shù)據(jù)處理的目的是消除或者減弱其他信號(hào)的影響。軌道誤差以近似線性趨勢(shì)存在于地形高程圖和形變圖中。目前常用的減弱軌道誤差的方法是對(duì)殘余相位做快速傅里葉變換計(jì)算殘余基線誤差;或者,對(duì)殘余相位做二次曲面擬合。這兩種方法對(duì)多數(shù)情況是適用的,但是不適合大氣傳播延遲效應(yīng)嚴(yán)重的情況,也不適合大范圍的形變信號(hào)如構(gòu)造運(yùn)動(dòng)或者潮汐等和軌道誤差有相同表現(xiàn)特征的情況。時(shí)序InSAR技術(shù)出現(xiàn)之后,采用最小二乘等方法計(jì)算干涉圖中的基線誤差殘余相位,利用不同時(shí)空基線的組合,根據(jù)平差原理,計(jì)算準(zhǔn)絕對(duì)軌道誤差,對(duì)軌道精度進(jìn)行交叉驗(yàn)證來評(píng)價(jià)其可靠性。也有研究建立模型聯(lián)合解算形變速率和軌道誤差,還有研究認(rèn)為軌道誤差在時(shí)間上沒有相關(guān)性,在時(shí)序InSAR技術(shù)中可以忽略軌道誤差的影響。但是,對(duì)于高精度的形變監(jiān)測(cè),軌道誤差對(duì)結(jié)果的影響不可忽略,因而對(duì)軌道誤差進(jìn)行建模和分析是十分必要的。本文根據(jù)目前基線誤差和軌道誤差建模與分析的現(xiàn)狀,針對(duì)InSAR中的軌道誤差進(jìn)行了研究,主要工作如下:1.詳細(xì)闡述了基于軌道信息、干涉圖信息和地面控制點(diǎn)信息的三種基線估計(jì)方法的原理、適用條件和實(shí)現(xiàn)過程,用Matlab編寫程序?qū)崿F(xiàn)了三種方法。應(yīng)用高分三號(hào)數(shù)據(jù)對(duì)基線估計(jì)的三種方法進(jìn)行了分析驗(yàn)證,分析了不同方法的效果和適用性。2.提出了基于地面控制點(diǎn)相位殘差定權(quán)的基線估計(jì)方法,推導(dǎo)了算法的數(shù)學(xué)模型,結(jié)合模擬數(shù)據(jù)論證了該方法在一定程度上減弱了大氣傳播延遲相位和形變相位對(duì)基線估計(jì)的影響。3.利用軌道誤差網(wǎng)平差原理,實(shí)現(xiàn)了對(duì)Los Angeles地區(qū)的Envisat ASAR數(shù)據(jù)的軌道誤差網(wǎng)平差,利用數(shù)據(jù)探測(cè)的方法,剔除觀測(cè)值中的粗差,獲得較為可靠的軌道誤差。
[Abstract]:Spaceborne synthetic Aperture Radar Interferometry (InSAR) is an important deformation monitoring technique. Different error sources will cause deviation of measurement results. When deformation is the main information, the purpose of InSAR data processing is to eliminate or weaken the influence of other signals. The orbit error exists in the topographic elevation map and the deformation map as an approximate linear trend. At present, the commonly used method to reduce orbit error is to calculate the residual baseline error by fast Fourier transform on the residual phase, or to do the Quadric surface fitting to the residual phase. These two methods are suitable for most cases, but they are not suitable for serious atmospheric propagation delay effects or for large scale deformation signals such as tectonic motions or tides with the same characteristics as orbital errors. After the time series InSAR technology appeared, the residual phase of baseline error in interferogram was calculated by least square method, and the quasi-absolute orbit error was calculated according to the principle of adjustment by using the combination of different space-time baselines. The track accuracy is cross-validated to evaluate its reliability. There are also some studies on the joint calculation of deformation rate and orbit error, and the conclusion that orbit error has no correlation in time, and the influence of orbit error can be ignored in time series InSAR technology. However, for high precision deformation monitoring, the influence of orbit error on the result can not be ignored, so it is necessary to model and analyze orbit error. According to the current situation of baseline error and orbit error modeling and analysis, the orbit error in InSAR is studied in this paper. The main work is as follows: 1. The principle, applicable conditions and realization process of three baseline estimation methods based on orbit information, interferogram information and ground control point information are described in detail. The three methods are realized by programming with Matlab. Three methods of baseline estimation are analyzed and verified by using the data of high score three. The effects and applicability of different methods are analyzed. A baseline estimation method based on phase residuals weight of ground control points is proposed, and the mathematical model of the algorithm is derived. Combined with the simulation data, it is demonstrated that this method weakens the influence of atmospheric propagation delay phase and deformation phase on baseline estimation to a certain extent. The orbit error net adjustment of Envisat ASAR data in Los Angeles region is realized by using the principle of orbit error net adjustment. By using the method of data detection, the gross error in the observed value is eliminated and the more reliable orbit error is obtained.
【學(xué)位授予單位】:中國(guó)地質(zhì)大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P207.1;P237
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王健;向茂生;李紹恩;;一種基于InSAR相干系數(shù)的SAR陰影提取方法[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2005年12期
2 路中;;干涉合成孔徑雷達(dá)及其在火山研究中的應(yīng)用(第一部分:InSAR原理)(英文)[J];測(cè)繪科學(xué);2006年01期
3 麥永耀;;合成孔徑雷達(dá)干涉測(cè)量InSAR原理及其應(yīng)用[J];科教文匯(上旬刊);2007年10期
4 劉國(guó)林;獨(dú)知行;薛懷平;郝曉光;;卡爾曼濾波在InSAR噪聲消除與相位解纏中的應(yīng)用[J];大地測(cè)量與地球動(dòng)力學(xué);2006年02期
5 張永志;何偉;羅凌燕;劉瑞春;;利用InSAR干涉測(cè)量區(qū)域的數(shù)字高程[J];西安科技大學(xué)學(xué)報(bào);2009年01期
6 王秀萍;;InSAR圖像相位解纏的最小費(fèi)用流法及其改進(jìn)算法研究[J];測(cè)繪科學(xué);2010年04期
7 范興豐;;基于InSAR的三峽地質(zhì)災(zāi)害監(jiān)測(cè)[J];化工之友;2006年07期
8 羅華;雷斌;胡玉新;;一種機(jī)載InSAR水體陰影的提取和識(shí)別方法[J];遙感技術(shù)與應(yīng)用;2014年02期
9 路旭,匡紹君,賈有良,黃立人;用INSAR作地面沉降監(jiān)測(cè)的試驗(yàn)研究[J];大地測(cè)量與地球動(dòng)力學(xué);2002年04期
10 Jan Dirk Wegner;Jens R. Ziehn;Uwe Soergel;李成龍;;基于高分辨率InSAR與光學(xué)數(shù)據(jù)的建筑物識(shí)別與高度估計(jì)[J];地殼構(gòu)造與地殼應(yīng)力;2011年01期
相關(guān)會(huì)議論文 前10條
1 趙爭(zhēng);張過;張繼賢;;遺傳算法在InSAR相位解纏中的應(yīng)用[A];第十三屆全國(guó)遙感技術(shù)學(xué)術(shù)交流會(huì)論文摘要集[C];2001年
2 高宏良;劉利力;章志佳;;INSAR處理中相位轉(zhuǎn)換高程技術(shù)的研究[A];2006年浙江省測(cè)繪學(xué)會(huì)工程測(cè)量專業(yè)委員會(huì)論文評(píng)審和討論工程測(cè)量發(fā)展趨勢(shì)會(huì)議論文集[C];2006年
3 劉利力;詹總謙;舒寧;;一種InSAR高程計(jì)算迭代法[A];第十四屆全國(guó)遙感技術(shù)學(xué)術(shù)交流會(huì)論文摘要集[C];2003年
4 陳艷玲;黃s,
本文編號(hào):2085144
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2085144.html