GNSS掩星大氣參數(shù)反演中電離層殘差模擬研究
本文選題:GNSS + 掩星。 參考:《中國礦業(yè)大學(xué)》2013年博士論文
【摘要】:GNSS掩星大氣探測(cè)技術(shù)已廣泛應(yīng)用于數(shù)值天氣預(yù)報(bào)和全球氣候監(jiān)測(cè)中。電離層是掩星大氣探測(cè)的主要誤差源之一,雙頻彎曲角線性組合法是目前應(yīng)用最廣泛的電離層誤差改正方法。由于GNSS信號(hào)傳播路徑的彎曲分離和電離層高階項(xiàng)的影響,經(jīng)該方法改正后,反演大氣參數(shù)中仍含有電離層殘余誤差。電離層殘余誤差是GNSS掩星反演中高層大氣參數(shù)的主要誤差。最大限度地降低電離層殘余誤差有利于實(shí)現(xiàn)GNSS掩星中高層大氣高精度觀測(cè)。彎曲角電離層殘余誤差的定性和定量研究對(duì)發(fā)展新的電離層誤差改正方法意義重大。 用ECMWF大氣模式和COSMIC數(shù)據(jù),對(duì)比分析了太陽活動(dòng)“寧靜”期和太陽活動(dòng)“活躍”期彎曲角誤差特性。結(jié)果表明,太陽活動(dòng)“活躍”期彎曲角標(biāo)準(zhǔn)偏差較大;平均偏差與“寧靜”期相比具有明顯的“負(fù)值趨向性”;電離層殘余誤差對(duì)平流層頂部(35~50km)和中間層底部(50~65km)彎曲角影響顯著。 以MSIS90大氣模式和3D NeUoG電離層模式為大氣背景,模擬分析了不同電離層條件下掩星事件的彎曲角電離層殘差。結(jié)果表明:彎曲角電離層殘差是中間層和平流層頂部掩星大氣反演參數(shù)的主要誤差,其大小與太陽活動(dòng)強(qiáng)度、地方時(shí)、掩星平面方位角密切相關(guān)。電離干擾會(huì)使彎曲角電離層殘余誤差增大數(shù)倍至二十多倍。 量化研究了平流層底部(15~35km)、平流層頂部(35~50km)、中間層底部(50~65km)和中間層頂部(65~80km)的區(qū)域日平均彎曲角電離層殘余誤差。以MSIS90大氣模式和3D NeUoG電離層模式為大氣背景,用GPS/MetOp-A真實(shí)軌道數(shù)據(jù)仿真模擬了2008年7月15日全天的掩星事件。彎曲角電離層殘余誤差分析過程中,全球被劃分為GLO (global)、NHH (north hemisphere high latitude)、NHM (north hemisphere middle latitude)、EDT (equatorial day time)、SHM (southhemisphere middle latitude)和SHH (south hemisphere high latitude)六個(gè)統(tǒng)計(jì)區(qū)域。分析了太陽活動(dòng)強(qiáng)度、緯度帶和電離層局部球?qū)ΨQ對(duì)彎曲角電離層殘差的影響。結(jié)果表明:彎曲角電離層平均偏差是一種負(fù)的系統(tǒng)性偏差,且隨太陽活動(dòng)強(qiáng)度的增強(qiáng)而增大。六個(gè)統(tǒng)計(jì)區(qū)域中,EDT的彎曲角電離層偏差最大,中間層頂部、中間層底部和平流層頂部的彎曲角電離層殘差平均偏差分別可達(dá)0.048μrad、0.041μrad和0.032μrad;SHH的彎曲角電離層殘差平均偏差最小,其大小幾乎為零。彎曲角電離層殘余誤差的量化研究對(duì)中高層大氣彎曲角電離層殘余誤差的建模和修正有一定的參考價(jià)值。 用三維射線追蹤法模擬分析了彎曲角電離層殘差的產(chǎn)生機(jī)理,并對(duì)印度洋區(qū)域的電離層殘差異常現(xiàn)象進(jìn)行了初步分析。結(jié)果表明,,“入射線”和“出射線”的電子密度分布不對(duì)稱是彎曲角電離層誤差異常的主要原因。
[Abstract]:GNSS occultation atmosphere detection technology has been widely used in numerical weather forecasting and global climate monitoring. The ionosphere is one of the main error sources in occultation atmosphere detection. The double frequency bending angle linear combination method is the most widely used method to correct the ionospheric errors. Because of the bending separation of the GNSS signal propagation path and the influence of the ionospheric higher order term, the residual ionospheric error is still found in the inversion atmospheric parameters after the correction of the method. The ionospheric residual error is the main error of GNSS occultation inversion. Minimizing the residual ionospheric errors is beneficial to the realization of high accuracy GNSS occultation in the upper atmosphere. The qualitative and quantitative study of the residual errors in the curved ionosphere is of great significance to the development of new methods for correcting the ionospheric errors. Based on ECMWF atmospheric model and COSMIC data, the error characteristics of bending angle in the "quiet" period of solar activity and the "active" period of solar activity are compared and analyzed. The results show that the standard deviation of bending angle in the "active" period of solar activity is larger, the average deviation is more "negative tendency" than that in the "quiet" period. The residual ionospheric errors have a significant effect on the bending angles of the stratospheric top (35 ~ 50km) and the bottom of the interlayer (50- 65km). Taking the MSIS90 atmospheric model and 3D NeUoG ionospheric model as the atmospheric background, the curved angle ionospheric residuals of occultation events under different ionospheric conditions are simulated and analyzed. The results show that the residual of the curved ionosphere is the main error of the atmospheric inversion parameters of the occultation at the top of the mesosphere and the stratosphere, and its magnitude is closely related to the intensity of solar activity and the azimuth of the occultation plane at the local time. Ionizing interference increases the residual error of the curved ionosphere by several times to more than 20 times. A quantitative study of the regional average daily mean angular ionospheric errors of 15 ~ 35 ~ 35 km ~ (1) at the bottom of the stratosphere, 35 ~ 50 km / m of the top of the stratosphere, 50 ~ 65 ~ 65 km / m of the bottom of the middle layer and 65 ~ 65 ~ 80 km / m of the top of the middle layer has been carried out. Using MSIS90 atmospheric model and 3D NeUoG ionospheric model as atmospheric background, the occultation events of July 15, 2008 were simulated using GPS/MetOp-A real orbit data. During the analysis of the residual errors in the curved ionosphere, the world is divided into six statistical regions, GLO hemisphere high latitudea hemisphere middle latitudee hemisphere middle equalateral day time GLO day middle latitudee and SHH south hemisphere high latitude). The influence of solar activity intensity, local spherical symmetry of latitude zone and ionosphere on the residual of curved angle ionosphere is analyzed. The results show that the mean deviation of the curved ionosphere is a negative systematic deviation and increases with the increase of the solar activity intensity. In the six statistical regions, the deviation of the curved angle ionosphere is the largest, and the mean deviation of the curved angle ionosphere at the top of the middle layer, the bottom of the middle layer and the top of the stratosphere can reach 0.048 渭 radr 0.041 渭 rad and 0.032 渭 radsh, respectively, and the mean deviation of the curved angle ionosphere is the smallest. Its size is almost zero. The quantitative study on the residual errors of the curved angle ionosphere has certain reference value for the modeling and correction of the residual errors of the curved angle ionosphere in the middle and upper atmosphere. The mechanism of the ionospheric residuals in the curved angle is simulated and analyzed by means of three-dimensional ray tracing method, and the anomalous phenomena of the ionospheric residuals in the Indian Ocean region are preliminarily analyzed. The results show that the asymmetry of the electron density distribution between the "in ray" and "out ray" is the main cause of the error anomaly of the curved angle ionosphere.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2013
【分類號(hào)】:P228.4;P412
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 袁運(yùn)斌,歐吉坤;WAAS系統(tǒng)下單頻GPS用戶電離層延遲改正新方法[J];測(cè)繪學(xué)報(bào);2000年S1期
2 袁運(yùn)斌,歐吉坤;GPS觀測(cè)數(shù)據(jù)中的儀器偏差對(duì)確定電離層延遲的影響及處理方法[J];測(cè)繪學(xué)報(bào);1999年02期
3 胡雄,曾楨,張訓(xùn)械,熊建剛,張冬婭,黃澤榮,艾勇;無線電掩星技術(shù)及其應(yīng)用[J];電波科學(xué)學(xué)報(bào);2002年05期
4 周義炎,吳云,喬學(xué)軍,張訓(xùn)械;GPS掩星技術(shù)和電離層反演[J];大地測(cè)量與地球動(dòng)力學(xué);2005年02期
5 陳俊勇;黨亞明;程鵬飛;;全球?qū)Ш叫l(wèi)星系統(tǒng)的進(jìn)展[J];大地測(cè)量與地球動(dòng)力學(xué);2007年05期
6 陳俊勇;;GPS技術(shù)進(jìn)展及其現(xiàn)代化[J];大地測(cè)量與地球動(dòng)力學(xué);2010年03期
7 吳小成;胡雄;宮曉艷;;山基GPS掩星折射率與探空折射率比較[J];地球物理學(xué)進(jìn)展;2008年04期
8 宮曉艷;胡雄;吳小成;王鑫;肖存英;徐麗;;GPS測(cè)量誤差對(duì)大氣掩星反演精度影響分析[J];地球物理學(xué)進(jìn)展;2008年06期
9 蔣虎,黃s
本文編號(hào):1949562
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/1949562.html