VRS改正數(shù)算法研究及精度分析
發(fā)布時(shí)間:2018-04-28 06:51
本文選題:網(wǎng)絡(luò)RTK + 誤差改正數(shù)。 參考:《解放軍信息工程大學(xué)》2013年碩士論文
【摘要】:本文針對(duì)VRS定位過程中各種誤差改正數(shù)算法及精度展開研究,介紹了幾種常規(guī)的空間內(nèi)插模型,總結(jié)了多路徑誤差、接收機(jī)觀測(cè)噪聲、天線載波相位中心偏差三種非空間相關(guān)誤差產(chǎn)生的原因及削弱方法。對(duì)軌道誤差、電離層延遲誤差、對(duì)流層延遲誤差三種空間相關(guān)誤差的改正數(shù)算法進(jìn)行了研究。重點(diǎn)對(duì)電離層延遲誤差和對(duì)流層延遲誤差兩種改正模型的可行性進(jìn)行了實(shí)驗(yàn)分析。論文的主要研究?jī)?nèi)容及創(chuàng)新點(diǎn)可總結(jié)如下: 1、詳細(xì)闡述了近十年來主要的四種空間相關(guān)誤差內(nèi)插模型:線性組合模型(LCM)、距離相關(guān)模型(DIM)、低階表面擬合模型(LSM)和線性內(nèi)插模型(LIM),并對(duì)其內(nèi)插效果以及應(yīng)用特點(diǎn)進(jìn)行了總結(jié)。 2、對(duì)CORS(Continuous Operational Reference System)網(wǎng)絡(luò)數(shù)據(jù)觀測(cè)和處理過程中存在的多路徑誤差、接收機(jī)觀測(cè)噪聲、天線載波相位中心偏差三種非空間相關(guān)誤差產(chǎn)生的原因及其削弱、消除的方法進(jìn)行了介紹。 3、總結(jié)分析了常規(guī)內(nèi)插方法在衛(wèi)星軌道誤差修正過程中存在的不足,介紹了ARS/VRS改正數(shù)計(jì)算模型,并對(duì)其進(jìn)行了理論分析。 4、研究了VRS定位中電離層延遲改正數(shù)算法,針對(duì)電離層延遲雙差殘差與基線長(zhǎng)度以及衛(wèi)星高度角之間存在的變化關(guān)系進(jìn)行了研究,,并將幾種常規(guī)空間內(nèi)插模型應(yīng)用于電離層延遲改正數(shù)計(jì)算中,結(jié)合實(shí)驗(yàn)對(duì)各模型的穩(wěn)定性和修正精度進(jìn)行了比對(duì)分析,結(jié)果表明LIM模型效果較優(yōu)。 5、針對(duì)中小尺度電離層行擾(MSTIDs)對(duì)CORS定位產(chǎn)生的影響進(jìn)行了研究,提出一種附加了時(shí)域信息的電離層延遲誤差預(yù)報(bào)模型,并通過實(shí)驗(yàn)數(shù)據(jù)對(duì)其進(jìn)行了驗(yàn)證分析。實(shí)驗(yàn)結(jié)果表明:在MSTIDs活躍時(shí)段,預(yù)報(bào)模型與常規(guī)模型相比,其電離層延遲最大改正量可從0.2m提高到0.05m,大大降低了MSTIDs的影響。研究了模型預(yù)報(bào)周期的長(zhǎng)短對(duì)模型精度的影響,結(jié)果表明:對(duì)于60km以上距離的中長(zhǎng)尺度CORS網(wǎng)絡(luò),采用90s預(yù)報(bào)周期的電離層延遲預(yù)報(bào)模型可以將改正數(shù)計(jì)算精度由0.05~0.07m提高到大約0.02m。 6、針對(duì)對(duì)流層雙差殘差與基線長(zhǎng)度、測(cè)站高差以及衛(wèi)星高度角之間存在的變化關(guān)系進(jìn)行了算例分析,結(jié)合實(shí)測(cè)數(shù)據(jù)將幾種常規(guī)空間內(nèi)插模型應(yīng)用于對(duì)流層改正數(shù)計(jì)算中,并對(duì)各內(nèi)插模型的實(shí)驗(yàn)結(jié)果進(jìn)行了比對(duì)分析。 7、在對(duì)流層延遲改正數(shù)計(jì)算過程中,針對(duì)測(cè)站間高程差異對(duì)常規(guī)內(nèi)插模型造成的高程方向偏差進(jìn)行了研究和實(shí)驗(yàn)分析,提出一種基于常規(guī)空間內(nèi)插模型的對(duì)流層延遲高程方向偏差修正模型,并結(jié)合實(shí)驗(yàn)數(shù)據(jù)對(duì)其可行性進(jìn)行了研究。實(shí)驗(yàn)結(jié)果表明,對(duì)于高度角大于25°的目標(biāo)衛(wèi)星,在流動(dòng)站與參考站高程差異接近于800m時(shí),其內(nèi)插精度能夠保持在7~8cm以內(nèi),較之常規(guī)的LIM模型精度提高了大約1~2cm,能夠準(zhǔn)確的計(jì)算出流動(dòng)站處對(duì)流層延遲雙差值,在應(yīng)用上是可行的。
[Abstract]:In this paper, based on the research of various error correction algorithms and accuracy in VRS positioning process, several conventional spatial interpolation models are introduced, and the multipath error and receiver observation noise are summarized. The causes and weakening methods of three kinds of non-spatial correlation errors of antenna carrier phase center deviation. The correction algorithms of three spatial correlation errors, orbit error, ionospheric delay error and tropospheric delay error, are studied. The feasibility of two correction models of ionospheric delay error and tropospheric delay error is analyzed experimentally. The main contents and innovations of this thesis can be summarized as follows: 1. Four main spatial correlation error interpolation models in recent ten years are described in detail: linear combination model, distance correlation model, low order surface fitting model and linear interpolation model. The interpolation effect and application characteristics are summarized. 2. The causes of non-spatial correlation errors, such as multipath error, receiver observation noise and antenna carrier phase center deviation, in the course of data observation and processing in CORS(Continuous Operational Reference System) network, are introduced, and the methods to eliminate them are also introduced. 3. The shortcomings of the conventional interpolation method in the correction of satellite orbit error are summarized and analyzed. The calculation model of ARS/VRS correction is introduced, and the theoretical analysis is carried out. 4. The algorithm of ionospheric delay correction in VRS positioning is studied, and the relationship between the residual of ionospheric delay and the length of the baseline and the satellite altitude angle is studied. Several conventional spatial interpolation models are applied to the calculation of ionospheric delay corrections. The stability and correction accuracy of each model are compared and analyzed by experiments. The results show that the LIM model is more effective. 5. The influence of mesoscale ionospheric disturbances (MSTIDs) on CORS location is studied, and a prediction model of ionospheric delay error with time-domain information is proposed, which is verified and analyzed by experimental data. The experimental results show that the maximum correction of ionospheric delay can be increased from 0.2 m to 0.05 m in the active period of MSTIDs, which greatly reduces the influence of MSTIDs. The effect of the length of the model prediction period on the accuracy of the model is studied. The results show that the ionospheric delay prediction model with 90 s prediction period can improve the accuracy of correction calculation from 0.05 ~ 0.07m to about 0.02m for the meso-long scale CORS network with the distance above 60km. 6. An example is given to analyze the relationship between tropospheric double difference residuals and baseline length, station height difference and satellite altitude angle. Several conventional spatial interpolation models are applied to the calculation of tropospheric corrections in combination with measured data. The experimental results of each interpolation model are compared and analyzed. 7. In the course of calculating tropospheric delay correction, the deviation of elevation direction caused by the conventional interpolation model is studied and experimentally analyzed according to the height difference between stations. A tropospheric delayed elevation deviation correction model based on conventional spatial interpolation model is proposed, and the feasibility of the model is studied in combination with experimental data. The experimental results show that when the height difference between mobile station and reference station is close to 800m, the interpolation accuracy of target satellite with altitude greater than 25 擄can be kept within 7~8cm. Compared with the conventional LIM model, the accuracy of the model is improved by about 1 ~ 2 cm, and the double difference of tropospheric delay at the mobile station can be calculated accurately, which is feasible in application.
【學(xué)位授予單位】:解放軍信息工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:P228.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 高星偉,劉經(jīng)南,李毓麟;網(wǎng)絡(luò)RTK的軌道誤差分析與消除[J];測(cè)繪科學(xué);2005年02期
2 邱蕾;陳遠(yuǎn)鴻;段艷霞;;GPS網(wǎng)絡(luò)RTK流動(dòng)站的電離層誤差改正分析[J];大地測(cè)量與地球動(dòng)力學(xué);2010年01期
3 劉迎春,林寶軍,張曉坤;一種衛(wèi)星精密星歷的插值方法[J];飛行器測(cè)控學(xué)報(bào);2004年04期
4 楊善婷;陳藝軍;鄭加柱;;GPS衛(wèi)星星歷插值擬合方法研究[J];森林工程;2010年01期
5 郭斐;張小紅;李星星;胡權(quán);;GPS系列衛(wèi)星廣播星歷軌道和鐘的精度分析[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2009年05期
本文編號(hào):1814228
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/1814228.html
最近更新
教材專著