GNSS接收機(jī)與慣導(dǎo)深耦合技術(shù)研究
本文選題:深耦合 + 深耦合跟蹤環(huán)路 ; 參考:《電子科技大學(xué)》2013年碩士論文
【摘要】:隨著全球定位系統(tǒng)(GPS)的廣泛使用,衛(wèi)星導(dǎo)航系統(tǒng)(GNSS)已經(jīng)非常成熟并且成為了現(xiàn)在各國(guó)主要的導(dǎo)航技術(shù)發(fā)展方向,但它不能為用戶提供連續(xù)的位置和速度信息、易受屏蔽和外界干擾等缺點(diǎn)對(duì)其使用及發(fā)展產(chǎn)生了限制,,而單獨(dú)的慣性導(dǎo)航系統(tǒng)(INS)又存在誤差隨時(shí)間快速積累的缺陷。因此,擁有缺陷互補(bǔ)特點(diǎn)的GNSS/INS組合導(dǎo)航系統(tǒng)進(jìn)入了各國(guó)研究人員的視線,其中GNSS接收機(jī)與慣導(dǎo)深耦合技術(shù)的研究已經(jīng)成為了研究的重點(diǎn)方向。 首先,本文介紹了GNSS/INS深耦合系統(tǒng)的發(fā)展歷史與研究現(xiàn)狀,然后從GNSS/INS深耦合系統(tǒng)的結(jié)構(gòu)入手,對(duì)深耦合系統(tǒng)的特性、優(yōu)勢(shì)和缺陷進(jìn)行了分析,并且提出了GNSS接收機(jī)與慣導(dǎo)深耦合技術(shù)研究的兩個(gè)關(guān)鍵問(wèn)題:深耦合跟蹤環(huán)路以及深耦合系統(tǒng)中的信息融合算法。 然后,針對(duì)常規(guī)深耦合跟蹤環(huán)路中高動(dòng)態(tài)和弱信號(hào)性能提升不足,全矢量深耦合跟蹤環(huán)路實(shí)現(xiàn)成本高、應(yīng)用范圍不廣的缺點(diǎn),本文提出了一種半矢量深耦合跟蹤環(huán)路,該結(jié)構(gòu)與常規(guī)深耦合跟蹤環(huán)路相比提高了環(huán)路的高動(dòng)態(tài)性能和弱信號(hào)性能,與全矢量深耦合跟蹤環(huán)路相比降低了其實(shí)現(xiàn)成本。 接著,本文對(duì)深耦合系統(tǒng)中的信息融合算法進(jìn)行了分析,針對(duì)深耦合系統(tǒng)中模型非線性、建模不精確、噪聲統(tǒng)計(jì)特性未知、以及計(jì)算過(guò)程中的舍入誤差導(dǎo)致濾波發(fā)散等問(wèn)題,在模糊自適應(yīng)強(qiáng)跟蹤擴(kuò)展卡爾曼濾波算法的基礎(chǔ)上提出了一種模糊自適應(yīng)強(qiáng)跟蹤平方根無(wú)跡卡爾曼濾波算法,該算法提高了深耦合系統(tǒng)的導(dǎo)航精度和穩(wěn)健性。 最后,為了更好地對(duì)深耦合系統(tǒng)中不同的深耦合跟蹤環(huán)路以及不同的信息融合算法進(jìn)行研究,本文設(shè)計(jì)并搭建了一種GNSS/INS深耦合系統(tǒng),該系統(tǒng)能夠模擬整個(gè)深耦合系統(tǒng)中的數(shù)據(jù)生成和處理過(guò)程,并且能夠處理采集到的真實(shí)數(shù)據(jù),為后續(xù)的研究提供了基礎(chǔ)。
[Abstract]:With the wide use of GPS (Global Positioning system), GNSS (Satellite Navigation system) has been very mature and has become the main navigation technology in various countries, but it can not provide users with continuous position and speed information.Its use and development are restricted by its disadvantages such as being easily shielded and interfered with by the outside world. However, the single inertial navigation system (ins) has the defect of accumulating errors rapidly over time.Therefore, the GNSS/INS integrated navigation system with complementary defects has entered the sight of researchers all over the world. Among them, the study of GNSS receiver and inertial navigation deep coupling technology has become the focus of research.Firstly, this paper introduces the development history and research status of GNSS/INS deep coupling system, and then starts with the structure of GNSS/INS deep coupling system, analyzes the characteristics, advantages and disadvantages of deep coupling system.Two key problems in the research of deep coupling technology between GNSS receiver and inertial navigation system are presented: the deep coupling tracking loop and the information fusion algorithm in the deep coupling system.Then, aiming at the shortcomings of high dynamic and weak signal performance improvement in conventional deep coupling tracking loop, high cost of full vector deep coupling tracking loop and limited application scope, a semi-vector deep coupling tracking loop is proposed in this paper.Compared with the conventional deep coupling tracking loop, the structure improves the high dynamic performance and weak signal performance of the loop, and reduces its implementation cost compared with the full vector deep coupling tracking loop.Then, this paper analyzes the information fusion algorithm in the deep coupling system, aiming at the nonlinear model, imprecise modeling, unknown statistical characteristics of noise, and the filtering divergence caused by rounding error in the calculation process.Based on the extended Kalman filter algorithm of fuzzy adaptive strong tracking, a fuzzy adaptive strong tracking square root unscented Kalman filter algorithm is proposed, which improves the navigation accuracy and robustness of the deep coupling system.Finally, in order to better study the different deep coupling tracking loops and different information fusion algorithms in the deep coupling system, a GNSS/INS deep coupling system is designed and built in this paper.The system can simulate the process of data generation and processing in the whole deep coupling system, and can process the collected real data, which provides the basis for further research.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:P228.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 惠懷志;蔡伯根;;組合導(dǎo)航信息融合算法的研究[J];北京交通大學(xué)學(xué)報(bào);2007年02期
2 高為廣;何海波;陳金平;;自適應(yīng)UKF算法及其在GPS/INS組合導(dǎo)航中的應(yīng)用[J];北京理工大學(xué)學(xué)報(bào);2008年06期
3 徐天河,楊元喜;改進(jìn)的Sage自適應(yīng)濾波方法[J];測(cè)繪科學(xué);2000年03期
4 謝紹麗,董緒榮;基于GPS/INS空對(duì)地定位系統(tǒng)的誤差分析和精度估計(jì)[J];測(cè)繪通報(bào);2005年04期
5 吳富梅;楊元喜;;基于小波閾值消噪自適應(yīng)濾波的GPS/INS組合導(dǎo)航[J];測(cè)繪學(xué)報(bào);2007年02期
6 李正強(qiáng);王宏力;楊益強(qiáng);劉春卓;陳琪;;信息融合技術(shù)在組合導(dǎo)航系統(tǒng)中的應(yīng)用[J];飛行力學(xué);2006年01期
7 唐康華;黃新生;胡小平;;衛(wèi)星/MIMU嵌入式導(dǎo)航接收機(jī)抗干擾性能分析[J];國(guó)防科技大學(xué)學(xué)報(bào);2007年03期
8 韓軍海,謝玲,陳家斌;INS/GPS組合導(dǎo)航方式及應(yīng)用前景[J];火力與指揮控制;2002年04期
9 狄e
本文編號(hào):1758814
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/1758814.html