天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 測繪論文 >

基于出租車GPS數(shù)據(jù)的高效益尋客推薦策略研究

發(fā)布時(shí)間:2018-03-23 17:48

  本文選題:出租車GPS數(shù)據(jù) 切入點(diǎn):時(shí)空分析 出處:《浙江大學(xué)》2017年碩士論文


【摘要】:隨著經(jīng)濟(jì)的快速發(fā)展和城市化建設(shè)的日益推進(jìn),人們對出行服務(wù)的需求愈發(fā)增長,出租車作為城市公共交通的重要組成部分,在人們的日常出行中發(fā)揮著重要作用。然而,因客源時(shí)空分布不均衡等因素而導(dǎo)致出租車高空載率、爭搶客源等不良現(xiàn)象頻現(xiàn),大大增加了出租車尋客的難度,降低了出租車的運(yùn)營效率。隨著ITS(Intelligent Transport System)技術(shù)的發(fā)展,越來越多的學(xué)者將出租車尋客模式作為研究熱點(diǎn),但普遍缺乏出租車效益評價(jià)指標(biāo)和顧及出租車供需關(guān)系及交通狀態(tài)的推薦策略方法研究。本文以深圳市13798輛出租車GPS數(shù)據(jù)為研究對象,以提高出租車效益為研究目標(biāo),在分析影響出租車尋客效益指標(biāo)因素的基礎(chǔ)上,充分考慮推薦的高效益載客熱點(diǎn)區(qū)域出租車的供需關(guān)系及交通狀態(tài),提出了基于出租車GPS數(shù)據(jù)的高效益尋客推薦策略方法,為出租車高效益尋客提供輔助決策支持,同時(shí)對于改善出租車資源分布不均衡的現(xiàn)狀,充分發(fā)揮出租車在城市交通中的補(bǔ)充作用有著重大意義。通過分析影響出租車尋客效益的指標(biāo)因素,本文以出租車載客態(tài)及相鄰空載態(tài)相結(jié)合作為研究對象,提出了基于出租車載客態(tài)單位時(shí)間收入及相鄰空載態(tài)尋客時(shí)間的效益指標(biāo)模型。基于該模型,在對出租車GPS數(shù)據(jù)進(jìn)行數(shù)據(jù)預(yù)處理及地圖匹配的基礎(chǔ)上,采用經(jīng)典數(shù)理統(tǒng)計(jì)及地統(tǒng)計(jì)分析方法,對出租車高效益客源的時(shí)空分布特征進(jìn)行了研究。通過對比分析工作日與非工作日及同一天不同時(shí)段的客源量變化特征來間接反映高效益客源隨時(shí)間在數(shù)量上的變化規(guī)律;同時(shí),對相應(yīng)時(shí)段的高效益客源的空間分布特征加以分析,為出租車高效益載客熱點(diǎn)推薦提供支撐;诟咝б婵驮吹臅r(shí)空分布特征,在對出租車進(jìn)行高效益載客熱點(diǎn)推薦時(shí),首先對出租車GPS數(shù)據(jù)進(jìn)行基于效益指標(biāo)模型的熱點(diǎn)分析及熱點(diǎn)區(qū)域的劃分,同時(shí)在充分顧及出租車行駛到載客熱點(diǎn)區(qū)域之后的出租車飽和度及當(dāng)前的交通擁堵狀態(tài)的基礎(chǔ)上,本文提出了基于出租車效益的推薦度指標(biāo)模型。該模型以出租車到載客熱點(diǎn)的最短行駛時(shí)間為基礎(chǔ),計(jì)算出租車到達(dá)載客熱點(diǎn)區(qū)域后的出租車供需比及交通運(yùn)行指數(shù),以此計(jì)算推薦度指標(biāo)來評估該高效益載客熱點(diǎn)是否適合推薦給空駛出租車前往,進(jìn)而形成一套完整的出租車高效益尋客推薦策略方法。最后,本文以深圳市2011年4月18日早高峰的某輛空駛出租車為研究實(shí)例,對其進(jìn)行基于出租車效益指標(biāo)模型及推薦度指標(biāo)模型的高效益載客熱點(diǎn)推薦,并通過對比分析同一天相同時(shí)段內(nèi)兩個(gè)高效益載客熱點(diǎn)區(qū)域的不同推薦結(jié)果,同時(shí)結(jié)合城市居民出行規(guī)律及城市功能區(qū)結(jié)構(gòu)的實(shí)際情況,驗(yàn)證了該推薦策略的有效性。
[Abstract]:With the rapid development of economy and the development of urbanization, people's demand for travel services is increasing. Taxi, as an important part of urban public transportation, plays an important role in people's daily travel. With the development of ITS(Intelligent Transport system technology, many bad phenomena such as high no-load rate of taxis and scrambling for passengers occur frequently because of the unbalanced distribution of passenger space and time, which greatly increases the difficulty of finding taxi passengers and reduces the efficiency of taxi operation. More and more scholars regard taxi passenger seeking mode as the research hotspot. However, there is a general lack of evaluation index of taxi benefit and the study of recommended strategy method, which takes into account the relationship between supply and demand of taxis and traffic conditions. This paper takes the GPS data of 13798 taxis in Shenzhen as the research object, and takes the improvement of taxi benefit as the research goal. Based on the analysis of the factors affecting the efficiency index of taxi passenger seeking, the relationship between supply and demand and the traffic state of the recommended hot spot region of high-benefit passenger transportation are considered, and the method of high-benefit passenger seeking recommendation strategy based on taxi GPS data is put forward. To provide auxiliary decision support for taxi high-benefit passenger seeking, and to improve the unbalanced distribution of taxi resources, at the same time, It is of great significance to give full play to the supplementary role of taxis in urban traffic. By analyzing the index factors that affect the efficiency of taxi passenger seeking, this paper takes the combination of taxi carriage and adjacent no-load as the research object. This paper presents a benefit index model based on the unit time income of taxi carriage and the adjacent no-load seeking time. Based on this model, the data preprocessing and map matching of taxi GPS data are carried out. Using classical mathematical statistics and geostatistical analysis methods, This paper studies the spatial and temporal distribution characteristics of taxi high-benefit passenger source, and indirectly reflects the variation law of high-benefit passenger source with time by comparing and analyzing the changing characteristics of passenger quantity in different periods of working day, non-working day and the same day. At the same time, the spatial distribution characteristics of the high-benefit passenger source in the corresponding period are analyzed to provide the support for the recommendation of the high-benefit passenger carrying hot spot of the taxi. Based on the space-time distribution characteristics of the high-benefit passenger source, when the taxi is recommended to the high-benefit passenger hot spot, Firstly, the hot spot analysis and hot spot area division based on benefit index model are carried out for taxi GPS data. At the same time, based on the full consideration of taxi saturation and current traffic congestion after taxi driving to the hot spot area, In this paper, a recommendation index model based on taxi benefit is proposed. Based on the shortest driving time from taxi to hot spot, the taxi supply and demand ratio and traffic operation index are calculated after the taxi reaches the hot spot. The index of recommendation degree is used to evaluate whether the hot spot of high benefit passenger carrying is suitable for empty taxi, and then a complete set of recommended strategy method of high benefit passenger search for taxi is formed. Finally, Taking an empty taxi in Shenzhen on April 18, 2011, as an example, the hot spot of high benefit passenger carrying is recommended based on taxi benefit index model and recommendation index model. By comparing and analyzing the different recommended results of two high-benefit hot spots in the same day and the same time period, and combining with the actual situation of urban residents' travel rules and the structure of urban functional areas, the effectiveness of the proposed recommendation strategy is verified.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U495;P228.4

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 郭建鋒;歐吉坤中國科學(xué)院測量與地球物理研究所動力大地測量重點(diǎn)實(shí)驗(yàn)室;袁運(yùn)斌中國科學(xué)院測量與地球物理研究所動力大地測量重點(diǎn)實(shí)驗(yàn)室;王海濤;;雙頻GPS數(shù)據(jù)的最優(yōu)相位平滑偽距算法研究[J];自然科學(xué)進(jìn)展;2008年02期

2 許永江,鄭貴明,顧國華;中國地殼運(yùn)動觀測網(wǎng)絡(luò)中的GPS數(shù)據(jù)流[J];地殼形變與地震;2000年04期

3 劉明學(xué);;淺談困難地區(qū)的GPS數(shù)據(jù)分析與處理方法[J];中國科技信息;2009年18期

4 葛榜軍;利用衛(wèi)星圖像和GPS數(shù)據(jù)輔助研究地震[J];國際太空;1996年04期

5 崔民元;張志剛;趙永安;宋健敏;邵杰;;GPS數(shù)據(jù)短波傳輸系統(tǒng)[J];石油物探裝備;1993年02期

6 趙永安;;GPS數(shù)據(jù)短波傳輸系統(tǒng)通過專家鑒定[J];石油物探裝備;1993年01期

7 李強(qiáng);馮曼;張東和;蕭佐;師立勤;;基于單站GPS數(shù)據(jù)的GPS系統(tǒng)硬件延遲估算方法及結(jié)果比較[J];北京大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年01期

8 申悅;柴彥威;;基于GPS數(shù)據(jù)的城市居民通勤彈性研究——以北京市郊區(qū)巨型社區(qū)為例[J];地理學(xué)報(bào);2012年06期

9 諾曼,喬迎春;利用GPS數(shù)據(jù)測量地震運(yùn)動[J];國際地震動態(tài);2000年08期

10 陳德旺;蔡伯根;王劍;唐濤;;軌道交通GPS數(shù)據(jù)約簡的數(shù)學(xué)模型與算法研究[J];鐵道學(xué)報(bào);2008年04期

相關(guān)會議論文 前7條

1 趙斌;楊少敏;王偉;;中國地殼運(yùn)動觀測網(wǎng)絡(luò)GPS數(shù)據(jù)重處理及最新結(jié)果[A];中國地球物理2010——中國地球物理學(xué)會第二十六屆年會、中國地震學(xué)會第十三次學(xué)術(shù)大會論文集[C];2010年

2 黃瀟婷;馬修軍;;基于GPS數(shù)據(jù)的旅游者活動節(jié)律研究[A];2011《旅游學(xué)刊》中國旅游研究年會會議論文集[C];2011年

3 劉健;米長樹;蔣彤;許樂;;機(jī)載GPS數(shù)據(jù)傳輸系統(tǒng)在人工影響天氣中的應(yīng)用[A];第26屆中國氣象學(xué)會年會人工影響天氣與大氣物理學(xué)分會場論文集[C];2009年

4 王佃來;付曉玲;;基于藍(lán)牙技術(shù)實(shí)現(xiàn)Java手機(jī)獲取GPS數(shù)據(jù)[A];2007通信理論與技術(shù)新發(fā)展——第十二屆全國青年通信學(xué)術(shù)會議論文集(上冊)[C];2007年

5 余濤;毛田;王云岡;曾中超;;利用同化方法進(jìn)行GPS數(shù)據(jù)三維電離層反演[A];第十四屆全國日地空間物理學(xué)術(shù)研討會論文集[C];2011年

6 白偉華;孫越強(qiáng);朱光武;杜起飛;陶朋;王晶;;基于NetCDF的GPS數(shù)據(jù)預(yù)處理[A];中國空間科學(xué)學(xué)會空間探測專業(yè)委員會第十九次學(xué)術(shù)會議論文集(下冊)[C];2006年

7 趙起文;王家賢;;VS—1型GPS數(shù)據(jù)傳輸轉(zhuǎn)換器設(shè)計(jì)[A];船舶通信導(dǎo)航學(xué)術(shù)會議(1993)論文集[C];1993年

相關(guān)重要報(bào)紙文章 前1條

1 編譯 張瑋鷗;GPS數(shù)據(jù)可優(yōu)化海嘯預(yù)警[N];中國氣象報(bào);2013年

相關(guān)碩士學(xué)位論文 前10條

1 許國淼;基于出租車GPS數(shù)據(jù)的道路交通運(yùn)行狀態(tài)判別[D];長安大學(xué);2015年

2 崔德冠;基于公交車GPS數(shù)據(jù)的城市道路偶發(fā)性擁堵檢測與系統(tǒng)實(shí)現(xiàn)[D];重慶大學(xué);2015年

3 曹靜;基于GPS數(shù)據(jù)的用戶軌跡相似性分析[D];中國海洋大學(xué);2015年

4 楊勝超;基于公交IC卡數(shù)據(jù)與公交車GPS數(shù)據(jù)的社區(qū)公交需求分析[D];西南交通大學(xué);2016年

5 王武;基于海量GPS數(shù)據(jù)的公共交通站點(diǎn)及路線優(yōu)化研究[D];西南大學(xué);2016年

6 李勇;基于出租車GPS數(shù)據(jù)的城市交通擁堵識別和關(guān)聯(lián)性分析[D];哈爾濱工業(yè)大學(xué);2016年

7 戴露;基于手機(jī)GPS數(shù)據(jù)的出行端點(diǎn)識別方法研究[D];西南交通大學(xué);2017年

8 劉麗;基于出租車GPS數(shù)據(jù)的高效益尋客推薦策略研究[D];浙江大學(xué);2017年

9 張志松;基于欠采樣GPS數(shù)據(jù)的信號交叉口延誤估計(jì)研究[D];哈爾濱工業(yè)大學(xué);2014年

10 黃金特;面向浮動車GPS數(shù)據(jù)的質(zhì)量評價(jià)系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];中山大學(xué);2011年

,

本文編號:1654524

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/1654524.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶d4c32***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com