天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 測繪論文 >

基于面向?qū)ο蠓椒ǖ牡乇砀脖环诸愌芯?/H1>
發(fā)布時(shí)間:2018-03-20 11:51

  本文選題:面向?qū)ο?/strong> 切入點(diǎn):地表覆被 出處:《成都理工大學(xué)》2013年碩士論文 論文類型:學(xué)位論文


【摘要】:地表覆被是陸地生命支撐系統(tǒng)的重要組成部分,及時(shí)準(zhǔn)確地了解地表覆被狀況具有重要的意義。遙感技術(shù)作為一種綜合性的探測手段,在地表覆被分類領(lǐng)域發(fā)揮著重要的作用。隨著遙感技術(shù)的快速發(fā)展,高空間分辨率成為一大發(fā)展趨勢。GeoEye、IKONOS、QuickBird等高分辨率影像在測繪、林業(yè)、國土等諸多方面得到了廣泛應(yīng)用。高分辨率遙感影像具有豐富的空間信息和紋理信息,而光譜信息相對較弱,傳統(tǒng)的基于像元的影像分類方法往往難以取得滿意的效果,,面向?qū)ο蟮姆诸惙椒☉?yīng)運(yùn)而生。面向?qū)ο蠓诸惙椒ㄒ詫ο鬄樽钚》诸悊卧,不僅將光譜信息作為分類依據(jù),還充分利用了空間結(jié)構(gòu)和紋理信息,大幅提高了高分辨率遙感影像地表覆被分類的精度與效率。 本文在研讀大量國內(nèi)外文獻(xiàn)的基礎(chǔ)上,論述了面向?qū)ο蠓诸惙椒ǖ脑,分析了面向(qū)ο蠓椒ㄝ^傳統(tǒng)分類方法的優(yōu)勢,以eCognition軟件為平臺(tái),利用研究區(qū)QuickBird高分辨率遙感影像進(jìn)行了地表覆被分類的研究。本文的研究內(nèi)容和研究成果如下: (1)對研究區(qū)各類數(shù)據(jù)進(jìn)行了預(yù)處理。對地形數(shù)據(jù)進(jìn)行處理并生成DEM;對遙感影像數(shù)據(jù)進(jìn)行了輻射校正、正射校正、波段優(yōu)選和融合處理。利用相關(guān)性矩陣確定了波段組合,通過比較選擇了效果最佳的融合方法。 (2)對最優(yōu)分割尺度問題進(jìn)行了詳細(xì)的探討,通過對研究區(qū)影像進(jìn)行實(shí)驗(yàn)驗(yàn)證,選擇了四個(gè)分割尺度構(gòu)建分類層次體系。 (3)充分利用影像對象的光譜、形狀、紋理特征等,選取地物的典型分類特征建立合適的分類規(guī)則,使用模糊分類方法實(shí)現(xiàn)了研究區(qū)地表覆被分類。 (4)對研究區(qū)面向?qū)ο蠓诸惤Y(jié)果進(jìn)行了分類精度評價(jià),并與基于像元的最大似然分類方法進(jìn)行了分類精度比較。通過比較發(fā)現(xiàn),面向?qū)ο蟮牡乇砀脖环诸惙椒ň雀,同時(shí)有效避免了椒鹽現(xiàn)象,視覺效果更佳。
[Abstract]:Surface cover is an important part of terrestrial life support system. It is of great significance to understand the land cover situation accurately and timely. Remote sensing technology as a comprehensive means of detection, With the rapid development of remote sensing technology, high spatial resolution has become a major development trend. High resolution remote sensing images have abundant spatial information and texture information, but spectral information is relatively weak. Traditional image classification methods based on pixel are often difficult to achieve satisfactory results. The object oriented classification method takes object as the minimum classification unit, which not only takes spectral information as the basis of classification, but also makes full use of spatial structure and texture information. The accuracy and efficiency of land cover classification in high resolution remote sensing images are greatly improved. On the basis of studying a large number of literature at home and abroad, this paper discusses the principle of object oriented classification method, analyzes the advantages of object oriented method compared with traditional classification method, and takes eCognition software as the platform. Land cover classification is studied by using QuickBird high-resolution remote sensing images in the study area. The research contents and results are as follows:. (1) preprocessing all kinds of data in the study area, processing topographic data and generating demm; performing radiometric correction, orthophoto correction, band optimal selection and fusion processing for remote sensing image data; determining the band combination by using the correlation matrix. By comparison, the best fusion method is selected. In this paper, the optimal segmentation scale is discussed in detail. Four segmentation scales are selected to construct the classification hierarchy through the experimental verification of the image in the study area. 3) make full use of the spectral, shape and texture features of the image object, select the typical classification features of the ground objects to establish the appropriate classification rules, and use the fuzzy classification method to realize the land cover classification in the study area. Finally, the classification accuracy of object oriented classification is evaluated and compared with the maximum likelihood classification method based on pixel. It is found that the precision of object oriented land cover classification method is higher than that of pixel based maximum likelihood classification method. At the same time effectively avoid salt and pepper phenomenon, visual effect is better.
【學(xué)位授予單位】:成都理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:P237

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 孫曉霞;張繼賢;劉正軍;;利用面向?qū)ο蟮姆诸惙椒◤腎KONOS全色影像中提取河流和道路[J];測繪科學(xué);2006年01期

2 何政偉;許輝熙;張東輝;趙銀兵;楊斌;;最佳DEM分辨率的確定及其驗(yàn)證分析[J];測繪科學(xué);2010年02期

3 陳玉敏;基于神經(jīng)網(wǎng)絡(luò)的遙感影像分類研究[J];測繪信息與工程;2002年03期

4 張友靜;樊恒通;;城市植被尺度鑒別與分類研究[J];地理與地理信息科學(xué);2007年06期

5 劉濤;孫忠林;孫林;;基于最大似然法的遙感圖像分類技術(shù)研究[J];福建電腦;2010年01期

6 劉偉強(qiáng),胡靜,夏德深;基于核空間的多光譜遙感圖像分類方法[J];國土資源遙感;2002年03期

7 蔡煜東,李偉,許偉杰;遙感土地覆蓋類型識(shí)別的自組織人工神經(jīng)網(wǎng)絡(luò)模型[J];國土資源遙感;1994年04期

8 紀(jì)仰慧,李國春,關(guān)宏強(qiáng);土地利用/覆蓋遙感分類研究綜述[J];農(nóng)業(yè)網(wǎng)絡(luò)信息;2005年08期

9 朱海洲;賈銀山;;基于支持向量機(jī)的遙感圖像分類研究[J];科學(xué)技術(shù)與工程;2010年15期

10 張友水,馮學(xué)智,阮仁宗;基于GIS的BP神經(jīng)網(wǎng)絡(luò)遙感影像分類研究[J];南京大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年06期

相關(guān)博士學(xué)位論文 前1條

1 黃慧萍;面向?qū)ο笥跋穹治鲋械某叨葐栴}研究[D];中國科學(xué)院研究生院(遙感應(yīng)用研究所);2003年

相關(guān)碩士學(xué)位論文 前2條

1 周春艷;面向?qū)ο蟮母叻直媛蔬b感影像信息提取技術(shù)[D];山東科技大學(xué);2006年

2 田新光;面向?qū)ο蟾叻直媛蔬b感影像信息提取[D];中國測繪科學(xué)研究院;2007年



本文編號(hào):1638955


本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/1638955.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶fd73b***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com