中高空間分辨率遙感影像結(jié)合的城市不透水面覆蓋度估算研究
本文選題:不透水面 切入點:光譜混合分解 出處:《山東農(nóng)業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:遙感影像解譯與信息提取一直是國際遙感領(lǐng)域研究的難點與熱點問題。城區(qū)土地覆蓋分類研究一直是全球?qū)W者研究現(xiàn)代地學(xué)關(guān)注的焦點與核心,此研究既可以為城市土地相關(guān)規(guī)劃、可持續(xù)發(fā)展相關(guān)政策的出臺提供重要參考,又可以為城市土地的合理利用提供數(shù)據(jù)基礎(chǔ)。不透水面是城區(qū)地表覆蓋重要的組分之一,不透水面覆蓋度是一個區(qū)域城鎮(zhèn)化程度、生態(tài)環(huán)境變化的重要指示因子。同時,不透水面的變化情況可以客觀反映一座城市的城市化和城市擴(kuò)展情況。21世紀(jì)以來,遙感技術(shù)發(fā)展迅速,國內(nèi)外科研人員利用遙感技術(shù)開展不透水面有關(guān)的研究與應(yīng)用日漸增多,如在城市專題制圖、城市生態(tài)環(huán)境監(jiān)測等領(lǐng)域開展應(yīng)用研究。獲取一座城市準(zhǔn)確、可靠的不透水面覆蓋度信息可以為這些研究提供準(zhǔn)確的輸入?yún)?shù)。本文主要圍繞基于中等空間分辨率遙感影像的亞像元不透水面覆蓋度估算、融合數(shù)字正射影像與nDSM數(shù)據(jù)的面向?qū)ο蟪菂^(qū)不透水面提取兩個主題開展研究。主要研究內(nèi)容和結(jié)論如下:(1)中等空間分辨率衛(wèi)星影像不透水面覆蓋度估算方法。使用德國路德維希堡市2010年的中等空間分辨率Landsat 5衛(wèi)星影像,應(yīng)用完全約束最小二乘混合像元分解方法進(jìn)行亞像元級不透水面覆蓋度遙感估算研究。得到了德國路德維希堡市的不透水面覆蓋度情況。并應(yīng)用研究區(qū)內(nèi)高分辨率遙感影像對實驗結(jié)果進(jìn)行了精度驗證,得到不透水面覆蓋度的估算值與真實值兩者的平均相對誤差為12.00%、相關(guān)系數(shù)為0.81,驗證了上述不透水面覆蓋度估算方法的可靠性。解決了傳統(tǒng)線性混合像元分解豐度圖經(jīng)常出現(xiàn)負(fù)值或者大于1的問題,解決了高分辨率遙感影像難以全部覆蓋研究區(qū)的問題。(2)面向?qū)ο蟮母叻直媛蔬b感影像城區(qū)不透水面精細(xì)提取方法。以德國路德維希堡市為研究區(qū),融合分辨率為0.09m的數(shù)字正射影像與nDSM數(shù)據(jù),利用面向?qū)ο蟮挠跋穹诸惙椒▽ρ芯繀^(qū)進(jìn)行了地表覆蓋分類。其中,同時使用了影像的光譜、紋理特征和nDSM的高程特征,分別使用支持向量機(jī)、隨機(jī)森林、規(guī)則分類、模糊隸屬度函數(shù)等分類器進(jìn)行分類,并通過總體分類精度、Kappa系數(shù)等評定標(biāo)準(zhǔn)對分類結(jié)果的精度進(jìn)行了客觀評價。實驗結(jié)果表明,支持向量機(jī)、隨機(jī)森林、模糊隸屬度函數(shù)分類、規(guī)則分類的總體分類精度分別為100.00%、99.05%、99.05%、91.43%,Kappa系數(shù)為1.0000、0.9871、0.9871、0.8840。
[Abstract]:Remote sensing image interpretation and information extraction has been a difficult and hot issue in the field of international remote sensing. The study of urban land cover classification has always been the focus and core of global scholars' research on modern geoscience. This study can not only provide an important reference for urban land related planning and sustainable development policies, but also provide a data basis for the rational use of urban land. Impermeable surface is an important component of urban land cover. Impermeable coverage is an important indicator of urbanization and ecological environment change in a region. At the same time, the change of impermeable surface can objectively reflect the urbanization and urban expansion of a city since the 21st century. With the rapid development of remote sensing technology, researchers at home and abroad use remote sensing technology to carry out research and application of impermeable surface, such as urban thematic mapping, urban ecological environment monitoring and other fields. Reliable coverage information of impermeable surface can provide accurate input parameters for these studies. This paper mainly focuses on the estimation of subpixel impermeable water coverage based on middle spatial resolution remote sensing images. In this paper, two subjects of object oriented urban impermeable surface extraction from digital orthophoto and nDSM data are studied. The main contents and conclusions are as follows: 1) estimation method of impermeability coverage of medium spatial resolution satellite images. Using a medium-resolution Landsat 5 satellite image from Ludwig, Germany, on 2010, In this paper, the method of fully constrained least square mixed pixel decomposition is used to study the remote sensing estimation of subpixel level impervious surface coverage. The case of impermeable coverage in Ludwig, Germany, is obtained, and the high resolution in the study area is applied. The accuracy of the experimental results is verified by the rate remote sensing image. The average relative error between the estimated value of impermeable surface coverage and the real value is 12.00 and the correlation coefficient is 0.81, which verifies the reliability of the above methods and solves the problem of traditional linear mixed pixel decomposition abundance. Graphs often have negative values or problems greater than 1, This paper solves the problem that high resolution remote sensing image is difficult to cover all of the study area. It is an object oriented method for fine extraction of impervious surface in urban area of high resolution remote sensing image. The study area is Ludwig, Germany. Combining the digital orthophoto image with nDSM data with the resolution of 0.09m, the ground cover classification of the study area is carried out by using the object-oriented image classification method, in which the spectrum, texture feature and elevation feature of the nDSM are used simultaneously. Support vector machine (SVM), random forest, regular classification and fuzzy membership function are used to classify the classification. The accuracy of the classification is evaluated objectively by using the overall classification accuracy and Kappa coefficient. The experimental results show that, The overall classification accuracy of support vector machine, random forest, fuzzy membership function classification and regular classification are 100.005 and 99.05, respectively. The Kappa coefficient is 1.00000.98710.9871and 0.8840.
【學(xué)位授予單位】:山東農(nóng)業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:P237
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李德仁;羅暉;邵振峰;;遙感技術(shù)在不透水層提取中的應(yīng)用與展望[J];武漢大學(xué)學(xué)報(信息科學(xué)版);2016年05期
2 顧海燕;閆利;李海濤;賈瑩;;基于隨機(jī)森林的地理要素面向?qū)ο笞詣咏庾g方法[J];武漢大學(xué)學(xué)報(信息科學(xué)版);2016年02期
3 朱紅雷;李穎;劉兆禮;付波霖;;基于半約束條件下不透水面的遙感提取方法[J];國土資源遙感;2014年02期
4 陳韜亦;陳金勇;趙和鵬;;基于Ecogniton的光學(xué)遙感圖像艦船目標(biāo)檢測[J];無線電工程;2013年11期
5 黃小巾;李家存;丁鳳;;基于改進(jìn)NDBI指數(shù)法的不透水面信息提取[J];地理空間信息;2013年05期
6 徐永明;劉勇洪;;基于TM影像的北京市熱環(huán)境及其與不透水面的關(guān)系研究[J];生態(tài)環(huán)境學(xué)報;2013年04期
7 閆利;趙展;聶倩;姚堯;;利用規(guī)則進(jìn)行高分辨率遙感影像地物提取[J];武漢大學(xué)學(xué)報(信息科學(xué)版);2012年06期
8 王浩;吳炳方;李曉松;盧善龍;;流域尺度的不透水面遙感提取[J];遙感學(xué)報;2011年02期
9 高志宏;張路;李新延;廖明生;邱建壯;;城市土地利用變化的不透水面覆蓋度檢測方法[J];遙感學(xué)報;2010年03期
10 李彩麗;都金康;左天惠;;基于高分辨率遙感影像的不透水面信息提取方法研究[J];遙感信息;2009年05期
相關(guān)碩士學(xué)位論文 前9條
1 朱琳;地理國情普查中遙感影像處理方法的研究[D];西安科技大學(xué);2015年
2 賈瑩;面向地理國情普查的高分辨率遙感影像面向?qū)ο蠓诸惣夹g(shù)[D];遼寧工程技術(shù)大學(xué);2014年
3 曾e,
本文編號:1601206
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/1601206.html