基于異質(zhì)度的地理國情數(shù)據(jù)變化檢測方法
本文選題:變化檢測 切入點:像斑類別異質(zhì)度 出處:《成都理工大學》2017年碩士論文 論文類型:學位論文
【摘要】:地理國情數(shù)據(jù)是各種地理信息的綜合和集成,反映國家自然資源、國家生態(tài)環(huán)境發(fā)展現(xiàn)狀,成為制定國家和區(qū)域發(fā)展戰(zhàn)略與發(fā)展規(guī)劃的重要基礎,能夠表達地表特征和地表變化情況,通過一些變化檢測的方法可以將兩個時期的地理國情數(shù)據(jù)進行檢測并得到檢測結(jié)果。本文主要研究地理國情數(shù)據(jù)變化檢測的方法,首先介紹了變化檢測理論、數(shù)據(jù)源、基本單元和變化檢測一般流程,變化檢測的數(shù)據(jù)源和基本單位在變化檢測過程中是非常重要的研究對象。變化檢測的一般流程又分為數(shù)據(jù)預處理、地理特征的提取、變化檢測和精度評估分析等。本文變化檢測采用的數(shù)據(jù)源是舊時期的矢量圖和新時期的遙感影像,變化檢測的基本單元是像斑。變化檢測方法是基于異質(zhì)度的地理國情數(shù)據(jù)變化檢測方法,該方法為了實現(xiàn)矢量圖與遙感影像的自動變化檢測,提出了一種基于像斑類別異質(zhì)度的矢量圖與遙感影像變化檢測方法。以矢量圖為約束,對遙感影像進行影像分割獲取像斑,采用標記分水嶺算法實現(xiàn)矢量圖約束的影像分割,在分水嶺的約束下利用傳統(tǒng)的標記分水嶺算法實現(xiàn)影像分割;提取分割后像斑的直方圖作為像斑的特征,利用直方圖表達像斑的特征后,像斑的特征距離就轉(zhuǎn)換為直方圖的距離,再用G統(tǒng)計量的算法計算直方圖距離,利用像斑與舊時期同類別像斑特征距離的均值來構(gòu)建像斑的類別異質(zhì)度,像斑類別異質(zhì)度表示像斑與其舊時期所屬地物類別間的異質(zhì)性;采用大津法獲取各類別的異質(zhì)度閾值,將像斑的類別異質(zhì)度與所屬地類的類別異質(zhì)度閾值進行比較,實現(xiàn)像斑的變化/未變化的判別。采用C++語言,基于GDAL(Geospatial Data Abstraction Library)開源庫與ArcEngine平臺,建設了地理國情常態(tài)化監(jiān)測數(shù)據(jù)變化檢測系統(tǒng)。系統(tǒng)實現(xiàn)了柵格與矢量數(shù)據(jù)的加載與疊加顯示、帶約束影像分割、像斑特征提取、像斑異質(zhì)度構(gòu)建、異質(zhì)度閾值獲取等功能。使用2014年的地理國情普查的地表覆蓋矢量數(shù)據(jù)與2016年QucikBird遙感影像做實驗分析,為了驗證本文方法的有效性,將本文方法同基于像斑灰度均值的方法進行了對比,正確率提升了0.08,誤檢率與漏檢率分別下降了0.27、0.12。
[Abstract]:Geographical national data is the synthesis and integration of all kinds of geographic information, reflecting the development status of national natural resources and national ecological environment, and becoming an important basis for the formulation of national and regional development strategies and development plans. It can express the surface characteristics and the change of the surface, and can detect the data of two periods by some methods of change detection. This paper mainly studies the method of the change detection of the data of the geographical situation. First of all, it introduces the theory of change detection, data source, basic unit and general process of change detection. The data sources and basic units of change detection are very important research objects in the process of change detection. The general process of change detection is divided into data preprocessing, extraction of geographical features, The data sources used in this change detection are vector images of the old period and remote sensing images of the new period. The basic unit of change detection is the image spot. The change detection method is based on the heterogeneity of the geographic national conditions data change detection method, in order to realize the automatic change detection of vector image and remote sensing image, In this paper, a method of vector image and remote sensing image change detection based on the heterogeneity of image spot category is proposed. With vector image as constraint, remote sensing image is segmented to obtain image spot, and image segmentation with vector constraints is realized by using marked watershed algorithm. Under the constraint of watershed, the traditional marking watershed algorithm is used to realize image segmentation, and the histogram of image spot after segmentation is extracted as the feature of image spot, and the feature of image spot is represented by histogram. The feature distance of the image spot is transformed into the distance of the histogram, then the histogram distance is calculated by the algorithm of G statistic, and the class heterogeneity of the image spot is constructed by using the mean value of the feature distance between the image spot and the same image spot of the old period. The heterogeneity degree of image spot category indicates the heterogeneity between image spot and its old feature category, and the threshold value of different heterogeneity degree is obtained by using the method of Dajin, and the class heterogeneity degree of image spot is compared with that of the category heterogeneity of belongs to ground category. Based on the GDAL(Geospatial Data Abstraction Library open source library and ArcEngine platform, the system of detecting the change of the change of the normal monitoring data of the geographical national conditions is built. The system realizes the loading and superposition display of the raster and vector data, which is based on the C language and the open source library and ArcEngine platform of GDAL(Geospatial Data Abstraction Library. The functions of constrained image segmentation, image spot feature extraction, image spot heterogeneity construction, heterogeneity threshold acquisition and so on are analyzed experimentally using the ground cover vector data from the 2014 General Survey of Geographical conditions and the 2016 QucikBird remote sensing image. In order to verify the effectiveness of this method, the method is compared with the method based on the gray mean of image spot. The correct rate is increased by 0.08, and the false detection rate and the missed detection rate are reduced by 0.27 and 0.12 respectively.
【學位授予單位】:成都理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:P208
【參考文獻】
相關(guān)期刊論文 前10條
1 巫兆聰;胡忠文;張謙;崔衛(wèi)紅;;結(jié)合光譜、紋理與形狀結(jié)構(gòu)信息的遙感影像分割方法[J];測繪學報;2013年01期
2 李雪;舒寧;王琰;李亮;;利用土地利用狀態(tài)轉(zhuǎn)移分析的變化檢測[J];武漢大學學報(信息科學版);2011年08期
3 鄧媛媛;巫兆聰;易俐娜;胡忠文;龔正娟;;面向?qū)ο蟮母叻直媛视跋褶r(nóng)用地分類[J];國土資源遙感;2010年04期
4 李雪;舒寧;李亮;王琰;;基于GIS輔助數(shù)據(jù)的樣本像斑變化檢測方法研究[J];計算機工程與應用;2010年14期
5 王文杰;趙忠明;朱海青;;面向?qū)ο筇卣魅诤系母叻直媛蔬b感圖像變化檢測方法[J];計算機應用研究;2009年08期
6 王桂婷;王幼亮;焦李成;;自適應空間鄰域分析和瑞利-高斯分布的多時相遙感影像變化檢測[J];遙感學報;2009年04期
7 尤紅建;傅琨;;基于分布模型差異的SAR變化檢測[J];武漢大學學報(信息科學版);2008年05期
8 孫永軍;童慶禧;秦其明;;利用面向?qū)ο蠓椒ㄌ崛竦匦畔J];國土資源遙感;2008年01期
9 陳云浩;馮通;史培軍;王今飛;;基于面向?qū)ο蠛鸵?guī)則的遙感影像分類研究[J];武漢大學學報(信息科學版);2006年04期
10 蔡曉斌;陳曉玲;王濤;吳忠宜;;基于圖斑空間關(guān)系的遙感專家分類方法研究[J];武漢大學學報(信息科學版);2006年04期
相關(guān)重要報紙文章 前1條
1 徐德明;;監(jiān)測地理國情 服務科學發(fā)展[N];人民日報;2011年
相關(guān)博士學位論文 前3條
1 王琰;基于像斑統(tǒng)計分析的高分辨率遙感影像土地利用/覆蓋變化檢測方法研究[D];武漢大學;2012年
2 高偉;基于特征知識庫的遙感信息提取技術(shù)研究[D];中國地質(zhì)大學;2010年
3 張曉東;基于遙感影像與GIS數(shù)據(jù)的變化檢測理論和方法研究[D];武漢大學;2005年
相關(guān)碩士學位論文 前4條
1 宋耀東;地理國情監(jiān)測技術(shù)與數(shù)據(jù)源分析研究[D];西安科技大學;2014年
2 馬永聰;基于遺傳算法的面向?qū)ο蟮倪b感圖像分類技術(shù)[D];上海交通大學;2010年
3 臧藝;基于面向?qū)ο蠛图蓪W習的高分辨率地物要素半自動提取方法與實現(xiàn)[D];中國測繪科學研究院;2008年
4 王莉莉;基于遙感影像與矢量圖的土地利用圖斑變化檢測方法研究[D];長安大學;2007年
,本文編號:1573954
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/1573954.html