InSAR大氣相位建模與估計(jì)及差分水汽分解
發(fā)布時(shí)間:2018-01-25 07:36
本文關(guān)鍵詞: InSAR 大氣相位 建模與估計(jì) 短基線集 水汽反演 出處:《中南大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:摘要:大氣水汽的時(shí)空變化是影響星載合成孔徑雷達(dá)(SAR)大地測量精度的關(guān)鍵因素。1994年,Massonnet等首次識別出了InSAR中的大氣效應(yīng),至今已有不少學(xué)者在InSAR大氣改正方面展開了大量研究。同時(shí),通過利用InSAR中的大氣延遲來反演水汽含量的變化,也促使了InSAR在氣象學(xué)上的應(yīng)用;诖,論文主要圍繞合成孔徑雷達(dá)干涉測量(Interfer-ometric Synthetic Aperture Radar, InSAR)過程中大氣延遲分量展開研究。主要研究工作如下: (1)對重軌InSAR中大氣相位進(jìn)行定量分析,以更好地理解InSAR大氣噪聲的特征。對典型區(qū)域的ERS Tandem數(shù)據(jù)進(jìn)行分析,結(jié)果表明,地形起伏越大,相位與地表高程的擬合度越高,對InSAR大氣相位的垂直分層部分的建模,指數(shù)模型要優(yōu)于線性模型;同時(shí),在描述InSAR大氣相位的紊流部分的結(jié)構(gòu)函數(shù)時(shí),Matern模型較傳統(tǒng)的球狀模型更為理想。該分析結(jié)果有助于建立更高精度的重軌InSAR大氣相位模型。 (2)為削弱大氣延遲對干涉結(jié)果的影響以提高InSAR的測量能力,本文在InSAR大氣相位特征分析的基礎(chǔ)上,研究了一種新的InSAR大氣相位建模與估計(jì)的方法。該方法首先采用穩(wěn)健估計(jì)確定大氣垂直分層部分模型參數(shù),然后基于Matern模型的Kriging插值用于估計(jì)大氣紊流部分,最后利用估計(jì)的大氣垂直分層和紊流資料改正InSAR測量結(jié)果。結(jié)果表明去除大氣影響后,InSAR重建DEM更趨近于參考DEM。 (3)借鑒SBAS中短基線組合的構(gòu)網(wǎng)方式,基于現(xiàn)代測量平差手段,利用時(shí)間序列上的多幅InSAR干涉圖分解出各SAR成像時(shí)刻的水汽分布。其中,假設(shè)所有SAR成像時(shí)刻的水汽在時(shí)間上服從零均值分布,從而增加約束條件解決方程秩虧問題。研究結(jié)果表明,反演的水汽值與同步的MERIS較為一致,說明本文提出的InSAR差分水汽分解方法具有較高的可靠性。圖22幅,表4個(gè),參考文獻(xiàn)55篇
[Abstract]:Abstract: the spatial and temporal variation of atmospheric water vapor is the influence of spaceborne synthetic aperture radar (SAR) geodetic precision key factors.1994, Massonnet first identified the atmospheric effect in InSAR, launched a lot of research has been corrected many scholars in the InSAR atmosphere. At the same time, by changing the delay to inversion of water vapor content by InSAR in the atmosphere, also contributed to the application of InSAR in meteorology. Based on this, the thesis focuses on the interferometric synthetic aperture radar (Interfer-ometric Synthetic Aperture Radar, InSAR) to launch the research component of atmospheric delay in the process. The main research work is as follows:
(1) for the quantitative analysis of atmospheric heavy rail in InSAR phase, in order to better understand the characteristics of InSAR atmospheric noise. The ERS Tandem data in typical areas were analyzed, the results show that the topography is bigger, and the phase of surface elevation fitting degree is high, the atmospheric phase InSAR vertical stratification part modeling, index the model is better than linear model; at the same time, the structure function of turbulent atmospheric phase of the InSAR part description, the spherical model Matern model even more than the traditional InSAR. The ideal model of the heavy rail atmospheric phase analysis results are helpful to establish more accurate.
(2) in order to reduce the impact on the atmospheric delay interference in order to improve the measurement capability of InSAR, based on InSAR analysis of atmospheric phase characteristics, studied a new method of InSAR modeling and estimation of atmospheric phase. This method uses robust estimation to determine the atmospheric vertical layer model parameters, then Kriging interpolation Matern based on the model is used to estimate the atmospheric turbulence, and finally using the estimated atmospheric vertical stratification and turbulence data to correct InSAR measurements. The results show that the removal of atmospheric effects after InSAR reconstruction DEM closer to the reference DEM.
(3) reference network scheme in SBAS short baseline combination, modern surveying adjustment method based on InSAR, using multiple time series interferograms decomposition of water vapor distribution by SAR imaging time. Among them, the assumption that all SAR imaging moment in time to zero mean water vapor distribution, thereby increasing the constraint conditions to solve the equation rank deficient problem. The results show that the inversion of the water vapor values are consistent with the synchronization of MERIS, reliability of the proposed InSAR differential water vapor decomposition method is higher. 22 charts, 4 tables, 55 references
【學(xué)位授予單位】:中南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:P237
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宓國柱,沈金英;X射線照射下HZ Her大氣的非球?qū)ΨQ結(jié)構(gòu)和觀測證據(jù)[J];空間科學(xué)學(xué)報(bào);1989年02期
2 楊洪儒;王楠;;地窩堡機(jī)場東南大風(fēng)特征及其大氣結(jié)構(gòu)[J];干旱氣象;2014年03期
3 ;美國大學(xué)氣象系的姴程,
本文編號:1462367
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/1462367.html
最近更新
教材專著