力、電誘發(fā)表面擴(kuò)散下內(nèi)連導(dǎo)線中晶內(nèi)微裂紋的演化
[Abstract]:The characteristic size of integrated circuits is decreasing day by day, and the reliability of electronic components has been paid much attention to, and the evolution of microstructures in internal conductors will greatly affect their reliability. Based on the basic theoretical framework of the dynamics of microstructural evolution, a finite element method is established to simulate the evolution of microcracks in interconnecting conductors. The main contents and conclusions are as follows: based on the classical theory of material surface diffusion and evaporation-condensation and its weak solution description, the surface tension and stress migration are derived respectively. The finite element governing equation of microcrack evolution in two-dimensional intergranular wire driven by surface tension and electromigration. According to the model of intragranular microcracks in interconnecting conductors under the force and electricity respectively, the corresponding finite element program is compiled, and the evolution process of microcracks is numerically simulated on the premise of fully verifying the accuracy and reliability of the program. Based on the numerical simulation of the evolution of microcracks in intergranular conductors induced by stress migration, it is concluded that the critical linewidth exists in the evolution of microcracks in elliptic grains under symmetrical tension and compression loads. Ratio of critical stress to critical form. With the decrease of line width, the increase of external load or the increase of morphology ratio, the time of microcrack segmentation decreases. Based on the numerical simulation of the evolution of microcracks in intergranular conductors induced by electromigration, it is found that the critical linewidth, the critical electric field and the critical morphology ratio exist in the evolution of microcracks in elliptical grains. The decrease of line width and the increase of electric field and shape ratio will contribute to the formation of the split cavity and accelerate the microcrack segmentation.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN601
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 岳武;秦紅波;周敏波;馬驍;張新平;;非對(duì)稱結(jié)構(gòu)Cu/Sn-58Bi/Cu焊點(diǎn)中電遷移致組織演變及損傷(英文)[J];Transactions of Nonferrous Metals Society of China;2014年05期
2 吳振宇;楊銀堂;柴常春;李躍進(jìn);汪家友;劉靜;;Cu互連應(yīng)力遷移溫度特性研究[J];物理學(xué)報(bào);2009年04期
3 劉彬;劉靜;吳振宇;汪家友;楊銀堂;;銅互連電遷移失效的研究與進(jìn)展[J];微納電子技術(shù);2007年04期
相關(guān)博士學(xué)位論文 前1條
1 趙智軍;電遷移引致薄膜導(dǎo)線力電失效的研究[D];清華大學(xué);1996年
相關(guān)碩士學(xué)位論文 前6條
1 李曉偉;力、電作用下晶內(nèi)微裂紋和沿晶微裂紋的演化[D];南京航空航天大學(xué);2014年
2 郭建偉;多場(chǎng)誘發(fā)表面擴(kuò)散、晶界擴(kuò)散下微裂紋的演化[D];南京航空航天大學(xué);2012年
3 黃鵬;多場(chǎng)作用下晶內(nèi)微裂紋的演化[D];南京航空航天大學(xué);2010年
4 李二麗;集成電路薄膜導(dǎo)線中孔洞形貌演化的相場(chǎng)法研究[D];上海交通大學(xué);2009年
5 邊寶龍;力、電作用下晶內(nèi)微裂紋的演化[D];南京航空航天大學(xué);2009年
6 李志剛;在外載荷下金屬材料內(nèi)部微裂紋的演化[D];南京航空航天大學(xué);2008年
,本文編號(hào):2324337
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2324337.html