天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電子信息論文 >

流體對(duì)流下大功率LED散熱性能研究

發(fā)布時(shí)間:2018-08-11 18:26
【摘要】:發(fā)光二極管(Light Emitting Diode,LED)具有節(jié)能、環(huán)保、體積小、壽命長、耐沖擊、可靠性高、響應(yīng)速度快等優(yōu)點(diǎn),被稱為第四代新型綠色照明光源。隨著LED在照明領(lǐng)域的應(yīng)用發(fā)展,高功率、高亮度、高品質(zhì)的LED已經(jīng)成為重要的發(fā)展趨勢(shì)。然而,目前LED的電光轉(zhuǎn)換效率還較低,隨著輸入功率的增大,散熱對(duì)LED器件的影響也越來越明顯。結(jié)溫的升高,導(dǎo)致發(fā)光波長發(fā)生偏移、光通量和使用壽命降低,所以LED的熱管理對(duì)器件的整體性能起著至關(guān)重要作用,如何提高大功率LED器件的散熱性能是其發(fā)展道路上亟待解決的關(guān)鍵技術(shù)之一。要獲得高品質(zhì)、高功率的LED,就必須理解LED熱沉結(jié)構(gòu)的散熱原理,改進(jìn)大功率LED封裝結(jié)構(gòu)。在大功率LED封裝的散熱設(shè)計(jì)上,最重要的是有效降低LED芯片的結(jié)溫和熱阻,通過設(shè)計(jì)合理的散熱結(jié)構(gòu),增加器件的整體散熱量。LED芯片的熱量主要是先通過熱傳導(dǎo)傳遞到散熱器,再通過熱對(duì)流與外界環(huán)境進(jìn)行交換,因?yàn)樵诠腆w與流體之間存在熱邊界層,所以如何減小邊界層厚度,是增加LED散熱性能的關(guān)鍵因素。因此,對(duì)大功率LED封裝結(jié)構(gòu)進(jìn)行研究,有利于提高大功率LED器件整體散熱性能,加快半導(dǎo)體照明時(shí)代的進(jìn)程。文中采用理論分析與計(jì)算機(jī)仿真模擬分析相結(jié)合的方法,研究了熱沉結(jié)構(gòu)對(duì)LED散熱性能的影響。其中,在自然對(duì)流條件下設(shè)計(jì)了新型散熱結(jié)構(gòu),在液冷條件下,探究了不同結(jié)構(gòu)熱沉的散熱機(jī)理。分析結(jié)果表明:(1)開縫基板能有效改善流場分布,提高表面換熱系數(shù),增加散熱性能。在傳導(dǎo)和對(duì)流的雙重作用下,存在最佳縫間距使結(jié)溫和熱阻最低,輸入功率為1 W時(shí),結(jié)溫和熱阻分別降低3.2 K和1.01 K/W。隨芯片輸入功率的增加,開縫基板的散熱效果愈發(fā)明顯。同時(shí),開縫基板的提出也節(jié)省了器件封裝成本。(2)在開縫基板且散熱體積相同的條件下,存在最佳翅片數(shù)量使LED散熱性能最好,翅片數(shù)量為6時(shí),結(jié)溫最低,為345.970 K。(3)運(yùn)用30°角矩形翅片的LED結(jié)溫和器件熱阻最低,換熱性能最好,即速度場與溫度場之間的協(xié)同性最好;菱形翅片次之,垂直平行翅片最差。30°角矩形翅片和菱形翅片由于傾斜角的存在,在增加換熱性能的同時(shí)也增加了流動(dòng)阻力,即速度與速度梯度之間的協(xié)同性變差;綜合分析換熱性能和流動(dòng)阻力,菱形翅片的綜合換熱性能最好。封裝散熱結(jié)構(gòu)的設(shè)計(jì)和散熱原理的分析,對(duì)提高大功率LED散熱性能具有極其重要的意義。研究大功率LED封裝結(jié)構(gòu)及其散熱性能,對(duì)改進(jìn)大功率LED封裝具有一定的指導(dǎo)意義,為解決大功率LED的散熱問題提供了新的途徑。
[Abstract]:Light emitting diode (Light Emitting) has the advantages of energy saving, environmental protection, small size, long life, high impact resistance, high reliability and fast response, etc. It is called the fourth generation green lighting source. With the development of LED in the field of lighting, high power, high brightness, high quality LED has become an important development trend. However, the electro-optic conversion efficiency of LED is still low. With the increase of input power, the effect of heat dissipation on LED devices is becoming more and more obvious. The increase of junction temperature leads to the shift of luminous wavelength, the decrease of luminous flux and service life, so the thermal management of LED plays an important role in the overall performance of the device. How to improve the heat dissipation performance of high power LED devices is one of the key technologies to be solved. In order to obtain high quality and high power LED, it is necessary to understand the heat dissipation principle of LED heat sink structure and improve the high power LED package structure. In the heat dissipation design of high power LED packaging, the most important thing is to effectively reduce the junction and thermal resistance of LED chip. By designing a reasonable heat dissipation structure, the overall heat dissipation of the device can be increased. The heat of the chip is mainly transferred to the radiator by heat transfer. Because there is a thermal boundary layer between solid and fluid, how to reduce the thickness of boundary layer is the key factor to increase the heat dissipation performance of LED. Therefore, the research of high power LED packaging structure is helpful to improve the overall heat dissipation performance of high power LED devices and speed up the process of semiconductor lighting era. In this paper, the influence of heat sink structure on the heat dissipation performance of LED is studied by combining theoretical analysis with computer simulation analysis. Among them, a new heat dissipation structure was designed under natural convection, and the heat sink mechanism of different structures was explored under liquid cooling conditions. The results show that: (1) the slit substrate can effectively improve the flow field distribution, increase the surface heat transfer coefficient and increase the heat dissipation performance. Under the dual action of conduction and convection, the optimum gap spacing makes the thermal resistance of junction temperature minimum. When the input power is 1 W, the thermal resistance of junction and temperature decreases by 3.2 K and 1.01 K / W, respectively. With the increase of chip input power, the heat dissipation effect of slit substrate becomes more and more obvious. At the same time, the proposed slit substrate also saves the packaging cost of the device. (2) under the same heat dissipation volume of the slit substrate, the optimal number of fins makes the heat dissipation performance of LED the best, the number of fins is 6, and the junction temperature is the lowest. For 345.970 K. (3) the thermal resistance of LED junction and temperature field is the lowest, and the heat transfer performance is the best, that is, the synergy between velocity field and temperature field is the best, and the rhomboid fin is the second. The perpendicular parallel fin has the worst .30 擄angle rectangular fin and rhomboid fin, which increases the heat transfer performance and increases the flow resistance at the same time, that is, the synergy between velocity and velocity gradient becomes worse. Comprehensive analysis of heat transfer performance and flow resistance, the rhomboid fin comprehensive heat transfer performance is the best. The design of package heat dissipation structure and the analysis of heat dissipation principle are of great significance to improve the heat dissipation performance of high power LED. The research on the high power LED packaging structure and its heat dissipation performance has a certain guiding significance for improving the high power LED packaging, and provides a new way to solve the heat dissipation problem of the high power LED.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN312.8

【參考文獻(xiàn)】

相關(guān)期刊論文 前7條

1 張淑芳;方亮;付光宗;談笑鈴;董建新;陳勇;高嶺;;導(dǎo)熱涂層對(duì)LED散熱性能的影響[J];半導(dǎo)體光電;2007年06期

2 馬璐;劉靜;;高功率LED熱管理方法研究最新進(jìn)展[J];半導(dǎo)體光電;2010年01期

3 王樂;吳珂;俞益波;孫大明;黃志義;;基于CFD的LED陣列自然對(duì)流散熱研究[J];光電子.激光;2010年12期

4 王樂;吳珂;俞益波;孫大明;黃志義;顧培夫;;自然對(duì)流條件下LED陣列散熱器改進(jìn)研究[J];光電子.激光;2011年03期

5 陳建龍;文尚勝;姚日暉;汪峰;;去除鋁基板的大功率LED熱分析[J];發(fā)光學(xué)報(bào);2012年12期

6 ;Physical quantity synergy in laminar flow field of convective heat transfer and analysis of heat transfer enhancement[J];Chinese Science Bulletin;2009年19期

7 胡紅利;劉斐;;LED燈散熱及余熱回收系統(tǒng)[J];中國照明電器;2009年01期

相關(guān)碩士學(xué)位論文 前2條

1 陳麗;大功率白光LED光源集成封裝技術(shù)研究[D];華南理工大學(xué);2011年

2 王昊;LED微槽群平板熱管散熱器研究[D];大連理工大學(xué);2009年

,

本文編號(hào):2177847

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2177847.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶0b0da***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com