W波段高性能檢波電路研制
本文選題:W波段 + 檢波器; 參考:《東南大學(xué)》2015年碩士論文
【摘要】:隨著科技的高速發(fā)展,毫米波輻射計(jì)廣泛應(yīng)用于遙感、探測、安檢等重要領(lǐng)域,具有廣闊的市場和巨大的商業(yè)價(jià)值。檢波電路作為輻射計(jì)的核心部分,尤其是直接檢波式電路,因其結(jié)構(gòu)簡單,系統(tǒng)噪聲溫度低,是近些年來輻射計(jì)接收前端研究的熱點(diǎn)課題。因此,本文將對(duì)W波段檢波電路進(jìn)行研究。在W波段,測試儀器接口均為波導(dǎo)口,本文首先研制了波導(dǎo)微帶鰭線過渡結(jié)構(gòu),利用Spline曲線取點(diǎn)優(yōu)化,縮短了鰭線過渡段的尺寸;通過在介質(zhì)基片末端加凸型槽,改善了接口處阻抗的不連續(xù)性,最終進(jìn)行了背腔結(jié)構(gòu)的實(shí)物加工驗(yàn)證。實(shí)驗(yàn)結(jié)果表明,S參數(shù)實(shí)測曲線和仿真曲線一致性高,背腔過渡結(jié)構(gòu)在84~110GHz內(nèi),反射系數(shù)小于-12dB,插損小于2dB,在整個(gè)80~110GHz頻帶內(nèi),反射系數(shù)小于-9dB。單側(cè)過渡插損小于0.9dB。隨后,利用該過渡轉(zhuǎn)換結(jié)構(gòu),我們分別對(duì)W波段檢波器和低噪聲放大器進(jìn)行了研制。W波段檢波器采用了國內(nèi)目前較少研究的VDI公司零偏置肖特基二極管,并編程提取了該二極管的Spice模型參數(shù),最終利用該參數(shù)設(shè)計(jì)了檢波器,實(shí)驗(yàn)結(jié)果表明在工作頻帶84~94GHz內(nèi),電壓靈敏度大于800mV/mW,在92GHz處電壓靈敏度高達(dá)1900mV/mW,接近國外先進(jìn)水平。W波段低噪聲放大器,我們采用了Gotmic公司LNA單片,通過兩級(jí)MMIC芯片級(jí)聯(lián),實(shí)現(xiàn)預(yù)期36dB左右增益。為了防止芯片級(jí)間反饋,在兩級(jí)芯片間加入了隔墻,并對(duì)隔墻進(jìn)行了仿真;設(shè)計(jì)了時(shí)序電源模塊,完成單電源供電;設(shè)計(jì)了低噪放的腔體結(jié)構(gòu),分別將低噪放高頻部分和低頻部分放在腔體的正反面,實(shí)現(xiàn)了物理隔離。最終完成裝配和測試,實(shí)驗(yàn)測得在工作頻帶84GHz-94GHz內(nèi),低噪放增益為18±2dB,在中心頻點(diǎn)89GHz處,1dB壓縮輸出功率為0dBm。增益沒有達(dá)到預(yù)期指標(biāo),通過反復(fù)實(shí)驗(yàn),推測原因主要在于芯片自身增益不足。最終,利用兩級(jí)低噪放級(jí)聯(lián)實(shí)現(xiàn)36dB左右的增益,計(jì)算得到系統(tǒng)的溫度靈敏度為0.6K,達(dá)到預(yù)期目標(biāo)。
[Abstract]:With the rapid development of science and technology, millimeter-wave radiometers are widely used in remote sensing, detection, security inspection and other important fields, with a broad market and huge commercial value. As the core part of radiometer, especially the direct detector circuit, the detection circuit is a hot topic in recent years because of its simple structure and low system noise temperature. Therefore, the W-band detection circuit will be studied in this paper. In the W band, the interface of the instrument is waveguide port. Firstly, the waveguide microstrip finline transition structure is developed in this paper. The size of the finline transition section is shortened by using the Spline curve to optimize the fin-line transition section, and the convex groove is added to the end of the dielectric substrate. The discontinuity of the impedance at the interface is improved, and the physical processing of the back cavity structure is finally verified. The experimental results show that the measured curve and the simulation curve are in good agreement with each other. The reflection coefficient of the back cavity transition structure is less than -12 dB and the insertion loss is less than 2 dB. The reflection coefficient is less than -9 dB in the whole frequency band of 80,110GHz. The unilateral transition insertion loss is less than 0.9 dB. Then, using the transition structure, we developed the W-band geophone and the low-noise amplifier respectively using the zero-offset Schottky diode of VDI Company, which is seldom studied in our country. The Spice model parameters of the diode are extracted by programming. Finally, the geophone is designed by using this parameter. The experimental results show that the detector is in the operating frequency band of 844GHz. The voltage sensitivity is greater than 800 MV / mW, and the voltage sensitivity is as high as 1900 MV / mW at 92 GHz, which is close to the foreign advanced level. W band low noise amplifier. We adopt Gotmic LNA monolithic and cascade through two MMIC chips to achieve the expected gain of about 36dB. In order to prevent the feedback between the chips, the partition wall is added between the two chips, and the partition wall is simulated; the sequential power supply module is designed to complete the power supply of the single power supply; the cavity structure of low noise amplifier is designed. The high frequency part and the low frequency part of the low noise amplifier are placed on the opposite side of the cavity, respectively, and the physical isolation is realized. The final assembly and test are completed. The experimental results show that the low noise amplifier gain is 18 鹵2 dB in the operating band of 84 GHz to 94 GHz, and the output power of 1 dB is 0 dB at 89GHz at the central frequency point. The gain is not up to the expected target. Through repeated experiments, it is speculated that the main reason is that the gain of the chip itself is insufficient. Finally, the gain of 36dB is realized by using two-stage low noise amplifier cascade, and the temperature sensitivity of the system is 0.6K, which achieves the expected goal.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN763.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王照;王銘;;一種具有自適應(yīng)能力的心電R波檢波電路[J];電子技術(shù)應(yīng)用;1988年12期
2 蔣敦斌,郭寶平;集成加熱恒溫檢波電路及溫度穩(wěn)定系統(tǒng)設(shè)計(jì)[J];半導(dǎo)體技術(shù);1987年05期
3 張曉飛;董浩斌;魯永康;常莉;;一款開關(guān)同步檢波電路的設(shè)計(jì)[J];電子器件;2008年06期
4 馮惠林;;自偏流檢波電路[J];廣西大學(xué)學(xué)報(bào)(自然科學(xué)版);1986年02期
5 陳海忠,周冰;EWB軟件在實(shí)驗(yàn)教學(xué)中的應(yīng)用[J];江蘇技術(shù)師范學(xué)院學(xué)報(bào);2003年04期
6 王建軍;張雷;;基于SMS7630的射頻檢波電路設(shè)計(jì)[J];電子產(chǎn)品世界;2005年23期
7 蔣敦斌;郭寶平;;集成傳感加熱恒溫檢波電路研制[J];西安理工大學(xué)學(xué)報(bào);1987年01期
8 鄭昊祖;;二極管包絡(luò)檢波電路的仿真分析[J];成功(教育);2008年11期
9 楊維平;;NJM2072聲音電平檢波電路[J];電子制作;1995年07期
10 許萍,方勇;用EWB對(duì)振幅調(diào)制與檢波電路進(jìn)行仿真[J];電信科學(xué);2003年05期
相關(guān)會(huì)議論文 前2條
1 范德睿;李衛(wèi)忠;鄧玉芬;陳章;;L波段檢波電路設(shè)計(jì)與分析[A];2011年全國微波毫米波會(huì)議論文集(下冊)[C];2011年
2 孫常磊;郭宏福;;超寬帶電場探頭檢波電路的復(fù)雜信號(hào)解析分析[A];第十七屆全國測控計(jì)量儀器儀表學(xué)術(shù)年會(huì)(MCMI'2007)論文集(上冊)[C];2007年
相關(guān)重要報(bào)紙文章 前1條
1 徐馳 摘譯;相位檢波電路[N];電子報(bào);2011年
相關(guān)碩士學(xué)位論文 前6條
1 李俊燁;W波段放大檢波電路研究[D];電子科技大學(xué);2015年
2 奚樹菁;UHF頻段RFID讀寫器的設(shè)計(jì)與實(shí)現(xiàn)[D];南京郵電大學(xué);2015年
3 張巍;W波段高性能檢波電路研制[D];東南大學(xué);2015年
4 宋俊霖;3毫米放大檢波電路研究[D];電子科技大學(xué);2013年
5 付作峰;局放信號(hào)的高頻檢波電路設(shè)計(jì)[D];西安電子科技大學(xué);2011年
6 謝學(xué)文;基于Elvis調(diào)幅與檢波電路虛實(shí)互動(dòng)實(shí)驗(yàn)平臺(tái)開發(fā)[D];東華大學(xué);2015年
,本文編號(hào):2107549
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2107549.html