天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 電子信息論文 >

氧化物光學晶體波導(dǎo)中的光折變效應(yīng)和光子晶體研究

發(fā)布時間:2018-07-03 17:03

  本文選題:鈮酸鋰 + 磷酸鈦氧鉀 ; 參考:《山東大學》2015年碩士論文


【摘要】:集成光學最早由貝爾實驗室的Miller提出,主要研究媒質(zhì)材料中的光學現(xiàn)象以及將光學元件集成化,主要解決通訊技術(shù)中的光傳輸和光學信號處理等問題。隨著信息的日益增長,普通的電信號已經(jīng)不能滿足人們對信息傳遞的需求,而以光信號為傳播載體的波導(dǎo)結(jié)構(gòu)及光纖等得到廣泛應(yīng)用。集成光學可以將光學器件與光波導(dǎo)結(jié)構(gòu)集成在同一塊襯底上實現(xiàn)一種或多種光學功能。與集成電路相比,以光為信號載體的集成光路具有天生的優(yōu)點,因為光子不會像電子一樣相互干擾。與非集成光學器件相比,集成光學器件可以做的體積更小、重量更輕、成本也更低。集成光學將所有元器件集成在同一襯底上,所以避免了調(diào)節(jié)各器件之間的耦合,同時也具有更強的穩(wěn)定性,這是集成光學重要的優(yōu)點。波導(dǎo)結(jié)構(gòu)是集成光學重要的組成部分,大多數(shù)光學元器件以波導(dǎo)結(jié)構(gòu)為基礎(chǔ)。波導(dǎo)從結(jié)構(gòu)上來說是折射率高的部分被折射率低的部分包裹起來的微米或亞微米量級光學結(jié)構(gòu)。由于波導(dǎo)結(jié)構(gòu)尺寸很小,即使在很低的入射光強下,波導(dǎo)中的光功率密度也會很高,所以體材料中的某些效應(yīng),比如材料的非線性和光折變等效應(yīng),在波導(dǎo)結(jié)構(gòu)中可能會增強。制備波導(dǎo)結(jié)構(gòu)的媒質(zhì)材料主要有玻璃、單晶材料、多晶材料、高分子聚合物等,因為他們本身具有優(yōu)秀的光學特性,比如光學非線性、光折變性能、熒光性能、倍頻性能等,在光學器件中應(yīng)用廣泛。在光學材料中如何制備波導(dǎo)結(jié)構(gòu),并研究其光學性質(zhì)一直是集成光學研究的熱門課題。所有晶體材料中,鈮酸鋰(LiNbO3)是集成光學中應(yīng)用較廣泛的一種。鈮酸鋰具有出色的電光和非線性性能,居里溫度高和不易潮解等穩(wěn)定的物理化學性能,廣泛應(yīng)用在各種光學器件中。鈮酸鋰波導(dǎo)廣泛應(yīng)用于光纖通訊、光學器件和集成光電子學中,近年來,對其研究一直是一個很熱門的課題。磷酸鈦氧鉀(KTiOPO4,簡稱KTP)晶體也是一種優(yōu)良的非線性光學晶體,尤其適用于制備倍頻器件,可通過多種方法制備波導(dǎo)結(jié)構(gòu)。制備波導(dǎo)結(jié)構(gòu)的方法有載能離子束、超快激光直寫、選擇性光誘導(dǎo)、離子交換、金屬離子擴散和離子束切片等,我們主要利用載能離子束的離子注入法制備光波導(dǎo)。離子注入過程中,注入離子會引起核能量損失與電子能量損失,這會引起注入?yún)^(qū)折射率的改變,從而形成波導(dǎo)結(jié)構(gòu)。波導(dǎo)區(qū)的折射率會增高,形成波導(dǎo)的勢阱,離子射程末端的折射率會降低,形成波導(dǎo)的勢壘。光子晶體作為一種新興人工合成光學材料,因為可以產(chǎn)生光子禁帶,應(yīng)用前景廣闊,引起了國內(nèi)外研究人員的廣泛關(guān)注。本文主要研究了鈮酸鋰與磷酸鈦氧鉀中平面及條形波導(dǎo)的制備方法,并研究了所制波導(dǎo)的各項性能;以及探索在磷酸鈦氧鉀波導(dǎo)結(jié)構(gòu)中制備光子晶體結(jié)構(gòu)。研究了氫離子注入摻鐵近化學計量比鈮酸鋰平面波導(dǎo)中的光折變效應(yīng)。使用二波混頻法,在633 nm光下測得了增益系數(shù)為15 cm-1,在輸入功率僅為幾微瓦數(shù)量級的條件下,測得響應(yīng)時間為幾秒數(shù)量級。研究了輕離子(三重能量He離子)與重離子(氧離子)分別注入磷酸鈦氧鉀制備平面波導(dǎo)及條形波導(dǎo)的方法。重建了折射率分布,發(fā)現(xiàn)無論是TE模式,還是TM模式都形成了“勢阱+勢壘”型波導(dǎo)結(jié)構(gòu)。研究了制備折射率差較大的KTP-on-SiO2平面波導(dǎo)的方法,并且在KTP條形波導(dǎo)上用聚焦離子束刻蝕法制備了光子晶體結(jié)構(gòu)。
[Abstract]:Integrated optics was first proposed by Miller in Baer laboratory. It mainly studied optical phenomena in medium materials and integrated optical components. It mainly solved the problems of optical transmission and optical signal processing in communication technology. With the increasing of information, ordinary electrical signals have not satisfied people's demand for information transmission. An integrated optics can integrate optical devices and optical waveguide structures on the same substrate to achieve one or more optical functions. Compared with integrated circuits, the integrated optical path with light as a signal carrier has a natural advantage, because photons do not interact with each other like electrons. Interference. Compared with non integrated optical devices, integrated optical devices can do smaller size, lighter weight, and lower cost. Integrated optics integrates all components on the same substrate, so it avoids the coupling between various devices and also has a stronger stability. This is an important advantage of integrated optics. The waveguide structure is a set. An important component of light formation, most optical components are based on the waveguide structure. In structure, the waveguide is a micrometer or submicron optical structure wrapped up in part of a high refractive index with a low refractive index. The optical power density in the waveguide is very small, even at a very low incident light intensity. It will be very high, so some effects in the material, such as the nonlinear and photorefractive effect of material, may be enhanced in the waveguide structure. The medium materials for the preparation of the waveguide structure are mainly glass, single crystal, polycrystalline, polymer, etc. because they have excellent optical properties, such as optical nonlinearity and photorefractive. Performance, fluorescence performance and frequency doubling performance are widely used in optical devices. In optical materials, how to prepare waveguide structures and study their optical properties has been a hot topic in integrated optics. Lithium niobate (LiNbO3) is a widely used type of integrated optics in all crystal materials. Lithium niobate has excellent electro-optic and non linear properties. Stable physical and chemical properties, such as high temperature and uneasy deliquescence, are widely used in all kinds of optical devices. Lithium niobate waveguides are widely used in optical fiber communication, optical devices and integrated optoelectronics. In recent years, the study of KTiOPO4 (KTiOPO4, KTP) is also a hot topic. Good nonlinear optical crystals are especially suitable for the preparation of frequency doubling devices. The waveguide structures can be prepared by a variety of methods. The methods of preparing the waveguide structure are the carrier ion beam, the ultra fast laser direct writing, the selective light induction, the ion exchange, the metal ion diffusion and the ion beam section. We mainly use the ion implantation of the energy ion beam to prepare the light. In the process of ion implantation, the injection ion causes the loss of nuclear energy and the loss of the electron energy, which will cause the change of the refractive index of the injection region, thus forming the waveguide structure. The refractive index of the waveguide region will increase, the potential well of the waveguide is formed, the refractive index at the end of the ion range will be reduced and the potential barrier of the waveguide is formed. Photonic crystal is a new kind of new type. Artificial synthetic optical material, because it can produce photonic band gap, has wide application prospect, which has aroused wide attention of researchers at home and abroad. This paper mainly studied the preparation methods of planar and bar waveguides in lithium niobate and potassium titanate phosphate, and studied the various properties of the waveguide and explored the structure of potassium titanium phosphate waveguide. The photonic crystal structure is prepared. The photorefractive effect of hydrogen ion implantation in the near stoichiometric lithium niobate waveguide is studied. The gain coefficient is 15 cm-1 under the two wave mixing method under 633 nm light, and the response time is measured for a few seconds under the condition of the input power of only a few watts. The light ion (three heavy energy) is studied. The method for the preparation of planar waveguide and strip waveguide with heavy ion (He) ions and heavy ions (oxygen ions) was injected into the planar waveguide and strip waveguide respectively. The refractive index distribution was reconstructed. It was found that both the TE mode and the TM mode formed the "potential well + barrier" type waveguide structure. The method of preparing the KTP-on-SiO2 plane waveguide with large refractive index difference was studied, and the KTP strip was used in the KTP strip. The photonic crystal structure was fabricated by focused ion beam etching on the waveguide.
【學位授予單位】:山東大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TN252

【相似文獻】

相關(guān)期刊論文 前10條

1 鄧曉清,楊沁清,王紅杰,胡雄偉,王啟明;硅基二氧化硅波導(dǎo)的應(yīng)力和偏振相關(guān)性的數(shù)值分析[J];半導(dǎo)體學報;2002年11期

2 阮麗真,徐敬輿,吳惠珍,陳益新;多模掩埋式平面玻璃波導(dǎo)的制作及測試[J];中國激光;1986年05期

3 陳錚,劉文育;在玻璃襯底上制作K~+離子交換掩埋波導(dǎo)的新工藝[J];中國激光;1991年02期

4 阮麗真,徐敬,

本文編號:2094339


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2094339.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a8cb5***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
成人免费视频免费观看| 日本在线不卡高清欧美| 日韩国产亚洲一区二区三区| 日本精品中文字幕人妻| 中文字幕av诱惑一区二区| 亚洲做性视频在线播放| 国产熟女一区二区不卡| 成人区人妻精品一区二区三区| 福利视频一区二区在线| 日韩蜜桃一区二区三区| 91人妻久久精品一区二区三区| 女人精品内射国产99| 91人妻人人揉人人澡人| 欧美日韩无卡一区二区| 国产又大又黄又粗又免费| 国产在线一区二区免费| 国产精品蜜桃久久一区二区| 亚洲乱码av中文一区二区三区| 国产午夜在线精品视频| 亚洲丁香婷婷久久一区| 日本人妻熟女一区二区三区| 亚洲免费视频中文字幕在线观看| 91日韩欧美在线视频| 亚洲最新的黄色录像在线| 欧美精品久久男人的天堂| 亚洲一级二级三级精品| 日韩特级黄色大片在线观看| 97人妻精品一区二区三区男同| 中文字幕禁断介一区二区| 国产又粗又猛又长又黄视频| 高清免费在线不卡视频| 国产老熟女超碰一区二区三区| 国产欧美日韩视频91| 日韩黄色大片免费在线| 情一色一区二区三区四| 男人操女人下面国产剧情| 国产一区二区三区精品免费| 欧美日韩高清不卡在线播放| 久久精品亚洲精品国产欧美| 高潮少妇高潮久久精品99| 韩国日本欧美国产三级|