基于微流控技術(shù)的微細氣泡生成特性及其試驗研究
本文選題:微細氣泡 + 生成特性 ; 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:微細氣泡是指粒徑為百微米級以下的氣泡,具有比表面積大、存在時間長、傳質(zhì)效率高等特點,在化工、環(huán)境、醫(yī)學(xué)及醫(yī)藥工程等諸多領(lǐng)域有著極為重要的潛在應(yīng)用價值。作為一種先進的微細氣泡制備方法,微流控技術(shù)能夠集成利用微細流道、流動聚焦、電霧化等手段,生成粒徑較小、尺度均勻且可控的微細氣泡,這是常規(guī)的微細氣泡制備方法所無法媲美的。本課題以在水溶液介質(zhì)中注入微細氣泡為應(yīng)用背景,以微流控裝置中的微細氣泡生成演變特性為主線開展研究。開展流動聚焦環(huán)境中的微細氣泡生成理論模型研究。通過建立合理假設(shè),簡化微細氣泡在其生成過程中的力學(xué)條件,建立流動聚焦環(huán)境中單個微細氣泡的球體及非球體理論預(yù)測模型。建立基于MATLAB/Simulink的微細氣泡生成理論模型的仿真模型,預(yù)測微細氣泡的脫離體積、生成時間及其生成演變過程,為集成化微細氣泡生成裝置的研制及集成方法的探究奠定理論基礎(chǔ);诶斐慑F的石英毛細管,研制機械裝配型微流控芯片,并利用高速顯微系統(tǒng)、微量注射裝置及MATLAB圖像處理工具,搭建微流控芯片中的微細氣泡生成特性試驗及測量系統(tǒng)。通過開展微細氣泡生成試驗,探究氣體壓強和液體流量對微細氣泡脫離體積、生成頻率、體積演變、中心位移及其運動速度的影響,驗證流動聚焦環(huán)境中的微細氣泡力學(xué)特性分析結(jié)果。開展低頻振動條件下的微細氣泡生成特性試驗研究;趬弘娞沾傻哪鎵弘娦(yīng),研制低頻微型振動試驗平臺。利用柔性鉸鏈的杠桿式位移放大原理,研制位移放大機構(gòu),實現(xiàn)對壓電陶瓷疊堆輸出位移幅值的放大。利用高速攝像系統(tǒng)和所編制的圖像處理程序,搭建振動條件下的微細氣泡生成特性試驗及測量系統(tǒng),并通過開展系列試驗,探究壓電陶瓷疊堆的正弦信號頻率和電壓幅值對微細氣泡平均粒徑和生成頻率的影響;谏鲜鑫⒘骺匦酒械牧鲃泳劢乖,利用3D打印工藝和石英毛細透明管,研制新型微流控裝置。搭建了高速顯微觀測系統(tǒng),開展新型微流控裝置中的微細氣泡生成特性試驗,探究其微細氣泡生成能力的同時,獲得氣泡脫離體積和生成時間隨輸入?yún)?shù)的變化規(guī)律。以生成大量粒徑較小且均勻可控的微細氣泡為目標,以基于不同流道形式的各種集成化方法為手段,探究微流控裝置的規(guī);煞椒,完成集成式微流控裝置的原理樣機研制。
[Abstract]:Micro bubble is a bubble with a diameter of less than 100 microns. It has the characteristics of large specific surface area, long existence time and high mass transfer efficiency. It has very important potential application value in many fields, such as chemical industry, environment, medicine and medical engineering. As an advanced method for the preparation of micro bubbles, microfluidic technology can integrate micro flow channels, flow focusing, electroatomization and other means to generate small size, uniform and controllable size of micro bubbles. This is not comparable to conventional microbubble preparation methods. In this paper, the micro bubble injection in aqueous solution is used as the application background, and the evolution characteristics of micro bubble formation in the micro fluidic device are taken as the main line of study. The theoretical model of micro bubble formation in flow focusing environment was studied. By establishing reasonable assumptions and simplifying the mechanical conditions of micro bubble formation, a theoretical prediction model of sphere and non-sphere of a single micro bubble in a flow focusing environment is established. A simulation model based on MATLAB / Simulink is established to predict the separation volume, generation time and evolution process of micro bubble, which lays a theoretical foundation for the development of integrated micro bubble generation device and the exploration of integration method. A mechanically assembled microfluidic chip was developed based on stretching tapered quartz capillary. The test and measurement system of micro bubble formation characteristics in microfluidic chip was built by using high speed micro system, micro injection device and MATLAB image processing tool. The effects of gas pressure and liquid flow on the separation volume, formation frequency, volume evolution, center displacement and velocity of movement of micro bubble were investigated by means of micro bubble formation test. The results of mechanical analysis of micro bubbles in flow focusing environment were verified. An experimental study on the formation characteristics of micro bubbles under low frequency vibration was carried out. Based on the inverse piezoelectric effect of piezoelectric ceramics, a low frequency micro vibration test platform was developed. Based on the lever displacement amplification principle of flexure hinge, a displacement amplification mechanism is developed to amplify the output displacement amplitude of piezoelectric ceramic stack. By using the high speed camera system and the image processing program, the test and measurement system for the formation characteristics of micro bubbles under vibration conditions was built, and a series of tests were carried out. The effects of sinusoidal signal frequency and voltage amplitude of piezoelectric ceramic stack on the average particle size and generation frequency of micro bubbles were investigated. Based on the flow focusing principle of the microfluidic chip mentioned above, a new type of microfluidic device was developed by using 3D printing technology and quartz capillary transparent tube. A high speed microscopic observation system was set up to test the formation characteristics of micro bubbles in a new type of micro fluidic device. At the same time, the variation law of bubble separation volume and generation time with input parameters was obtained as well as the ability of micro bubble formation. In order to generate a large number of micro bubbles with small particle size and uniform and controllable size, and taking various integration methods based on different flow channels as the means, this paper explores the large-scale integration method of microfluidic devices. The principle prototype of integrated microfluidic device is developed.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN492
【參考文獻】
相關(guān)期刊論文 前8條
1 曲燕;;T型微通道液滴/氣泡生成時間和大小的研究現(xiàn)狀[J];節(jié)能技術(shù);2014年05期
2 楊麗;廖傳華;朱躍釗;陳海軍;金勤芳;;微納米氣泡特性及在環(huán)境污染控制中的應(yīng)用[J];化工進展;2012年06期
3 徐進良;賴喜銳;王斌;徐立;劉國華;;流動聚焦微氣泡流型分布及控制參數(shù)實驗[J];納米技術(shù)與精密工程;2012年01期
4 陳彬劍;程林;肖琦;;T型微通道內(nèi)氣泡生成的實驗研究[J];實驗室研究與探索;2011年08期
5 何術(shù)龍;邢圣德;程紅霞;倪其軍;;快艇氣泡減阻的原理研究與相似比分析(英文)[J];船舶力學(xué);2010年09期
6 吳勝軍;方為茂;趙紅衛(wèi);昌宇奇;馮波;熊瑩;林學(xué)理;;陶瓷微孔膜管制造微氣泡的研究[J];膜科學(xué)與技術(shù);2009年06期
7 徐振華;趙紅衛(wèi);方為茂;鐘本和;潘美英;陳剛;羅永欽;;金屬微孔管制造微氣泡的研究[J];環(huán)境污染治理技術(shù)與設(shè)備;2006年09期
8 劉炯天,王永田;自吸式微泡發(fā)生器充氣性能研究[J];中國礦業(yè)大學(xué)學(xué)報;1998年01期
相關(guān)博士學(xué)位論文 前1條
1 謝建;微小槽道內(nèi)微孔壁面逸出氣泡動力學(xué)行為及特性[D];重慶大學(xué);2013年
相關(guān)碩士學(xué)位論文 前2條
1 陳如艷;微氣泡生成技術(shù)的試驗研究[D];中國石油大學(xué);2008年
2 劉波;氣泡生成力學(xué)機理及氣泡發(fā)生器裝置研究[D];昆明理工大學(xué);2006年
,本文編號:2089163
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2089163.html