銀納米線電極在有機電致發(fā)光器件中的應用研究
發(fā)布時間:2018-06-24 08:34
本文選題:有機電致發(fā)光器件 + 銀納米線; 參考:《吉林大學》2015年碩士論文
【摘要】:有機電致發(fā)光器件(Organic Light-Emitting Device, OLED)具有主動發(fā)光、溫度相應特性好、質量輕、亮度高等優(yōu)點,所以近年來引起了人們的廣泛關注。OLED最突出的優(yōu)點就是可以實現(xiàn)柔性,這使其在柔性光電領域,如電子報紙或者可穿戴產品上具有很高的應用前景。眾所周知,實現(xiàn)柔性OLED制備中的關鍵之一就是柔性電極的選擇。ITO是最常用的透明電極材料,因為其在可見光范圍內具有很高的透過率,并且導電性很好。但是它本身性質很脆,,易斷裂,成膜的過程需要高溫濺射,而且隨著銦儲量的缺乏使得ITO的成本越來越高,這些都限制了其在柔性器件中的應用。 迄今為止業(yè)界研制出了很多代替ITO作為柔性電極的材料,例如石墨烯、碳納米管、導電聚合物、銀納米線等等。石墨烯最成熟的技術是通過CVD生長制備,但其成本很高;碳納米管因為管與管之間的結合不好使得其方塊電阻很高;導電聚合物的光電性能也一直無法達到ITO的水平。銀納米線薄膜是隨機分布的網(wǎng)格結構,具有很好的延展性和機械穩(wěn)定性,制備方法非常簡單,其光電性能也可以達到ITO水平,所以銀納米線是一種很好的代替ITO的材料。但是銀納米線是不規(guī)則的網(wǎng)狀結構,這使得直接制備在襯底上的銀納米線薄膜粗糙度很大,最高可以達到幾百納米,造成器件短路,這也是至今利用銀納米線電極制備柔性有機電致發(fā)光器件的文章鮮有發(fā)表的原因。 本文首先利用脫模工藝技術,在柔性襯底上制備了銀納米線薄膜。通過原子力顯微鏡測試可以證明,相對于直接制備在玻璃襯底上的銀納米線薄膜,利用脫膜工藝技術可以有效地降低薄膜的表面粗糙度,粗糙度由78.3nm下降到了3.81nm。所制得的銀納米線電極的光電性能也是非常好的,在方塊電阻為50Ω/sq時透過率可以達到80%,并且脫膜工藝技術不會影響薄膜的表面形貌。我們利用銀納米線電極在柔性襯底上制備了有機電致發(fā)光器件,所制得的器件具有很好的光電性能和機械穩(wěn)定性。之后我們利用聚合物材料PEDOT:PSS與銀納米線結合制備了復合薄膜,并利用脫膜工藝技術將其制備在了柔性襯底上,這同樣降低了復合薄膜的表面粗糙度,由27.2nm下降到了0.372nm。我們測試了復合薄膜的光電性能,與單獨的兩種材料所制備的薄膜相比都有顯著提高。最后我們利用復合薄膜作為透明電極,在柔性襯底上制備了有機電致發(fā)光器件,其最大亮度可以達到5380cd/m2,最大效率為51.3cd/A。所得的柔性器件具有非常好的機械穩(wěn)定性,在彎折50次的過程當中器件可以保持非常好的發(fā)光狀態(tài),且效率并沒有發(fā)生明顯改變。
[Abstract]:Organic Light-Emitting device (OLED) has the advantages of active luminescence, good temperature characteristic, light mass, high brightness and so on. This makes it have a high application prospect in flexible optoelectronic fields, such as electronic newspapers or wearable products. It is well known that the choice of flexible electrode. ITO is the most commonly used transparent electrode material in the fabrication of flexible OLED because of its high transmittance and good conductivity in the visible light range. However, its properties are brittle, easy to break, the process of film formation needs high temperature sputtering, and with the lack of indium reserves, ITO costs more and more, which limits the application of ITO in flexible devices. So far, many materials have been developed to replace ITO as flexible electrodes, such as graphene, carbon nanotubes, conductive polymers, silver nanowires and so on. The most mature technology is to prepare graphene by CVD, but its cost is very high; carbon nanotubes (CNTs) have high square resistance due to the poor bonding between tubes and tubes; and the optoelectronic properties of conductive polymers have not been able to reach the level of ITO. Silver nanowires are randomly distributed mesh structures with good ductility and mechanical stability. The preparation method is very simple and its photoelectric properties can reach ITO level. So silver nanowires are a good substitute for ITO. But the silver nanowires are irregular mesh structure, which makes the silver nanowires directly prepared on the substrate have a great roughness, up to several hundred nanometers, resulting in a short circuit of the devices. This is why there are few published articles on the fabrication of flexible organic electroluminescent devices using silver nanowire electrodes. In this paper, silver nanowire films were prepared on flexible substrates by demoulding technology. Compared with the silver nanowire films deposited directly on glass substrates, the surface roughness of the films can be effectively reduced by defilm technology from 78.3nm to 3.81nm. the atomic force microscopy (AFM) results show that the surface roughness of the films is reduced from 78.3nm to 3.81nm. The photovoltaic properties of the silver nanowire electrode are also very good. The transmittance of the silver nanowire electrode is up to 80 when the square resistance is 50 惟 / sq, and the surface morphology of the film will not be affected by the de-film technology. We have fabricated organic electroluminescent devices on flexible substrates using silver nanowire electrodes. The fabricated devices have good optoelectronic properties and mechanical stability. After that, the composite films were prepared by combining the polymer PEDOT: PSS with silver nanowires, and the composite films were prepared on flexible substrates by demembrane technology, which also reduced the surface roughness of the composite films from 27.2nm to 0.372nm. The optoelectronic properties of the composite films have been tested and compared with the films prepared by two kinds of materials. Finally, we fabricated organic electroluminescent devices on flexible substrate using composite film as transparent electrode. The maximum luminance of organic electroluminescent devices can reach 5380cd/ m2 and the maximum efficiency is 51.3cd/ A. The obtained flexible device has very good mechanical stability. It can maintain a very good luminescence state during the 50 times bending process, and the efficiency has not changed obviously.
【學位授予單位】:吉林大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TN383.1
【共引文獻】
相關期刊論文 前10條
1 劉兆元;丁春梅;朱英;萬梅香;江雷;;水下超疏油聚(3,4-乙烯基二氧)噻吩薄膜的制備[J];高等學;瘜W學報;2014年01期
2 李海燕;劉靜;;基于液態(tài)金屬墨水的直寫式可拉伸變阻器[J];電子機械工程;2014年01期
3 孫旭;黃英;王雷;丁曉;王艷麗;;基于銀納米線的柔性透明導電薄膜的研究[J];材料開發(fā)與應用;2013年06期
4 陳超華;易早;譚秀蘭;陳家富;吳R
本文編號:2060837
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2060837.html
教材專著