半導(dǎo)體量子點(diǎn)中的非線性光整流效應(yīng)
本文選題:非線性光學(xué) + 低維半導(dǎo)體材料。 參考:《內(nèi)蒙古大學(xué)》2017年博士論文
【摘要】:非線性光學(xué)是現(xiàn)代光學(xué)領(lǐng)域十分重要的一個分支,它是自激光出現(xiàn)以后而發(fā)展起來的一門重要學(xué)科.隨著研究的日趨成熟,非線性光學(xué)在光纖通信、光計(jì)算、光譜技術(shù)、激光技術(shù)以及物質(zhì)結(jié)構(gòu)分析等方面具有重要的應(yīng)用價值,同時也促進(jìn)了其他科學(xué)領(lǐng)域的發(fā)展.由于理想的非線性光學(xué)材料要求其具有較快的響應(yīng)速度、較大的非線性極化率以及較小的閾值功率,而大量的科學(xué)研究證明,人工合成的低維半導(dǎo)體材料正符合上述要求.在低維半導(dǎo)體材料中,由于量子局域效應(yīng)的存在,使得其非線性光學(xué)效應(yīng)更加明顯.因此,研究低維半導(dǎo)體材料中的非線性光學(xué)性質(zhì)具有十分重要的意義.本文針對Ⅲ-Ⅴ族及Ⅱ-Ⅵ族低維半導(dǎo)體材料在非線性光學(xué)性質(zhì)方面所體現(xiàn)出的特性,首先在有效質(zhì)量近似下利用變分法研究了外電場下閃鋅礦結(jié)構(gòu)GaN/AlxGa1-xN橢球形量子點(diǎn)中的非線性光整流效應(yīng).其次,我們研究了外電場下球形量子點(diǎn)中極化子對非線性光整流效應(yīng)的影響,考慮了局域光學(xué)聲子和界面光學(xué)聲子分別與電子和雜質(zhì)的相互作用.最后,研究了外電場下球形量子點(diǎn)中激子的非線性光整流效應(yīng).數(shù)值計(jì)算結(jié)果表明,由于量子局域效應(yīng)的存在,在橢球形量子點(diǎn)中可以獲得很明顯的光整流效應(yīng).橢球形狀、量子點(diǎn)尺寸、外加電場、A1組分等對光整流效應(yīng)有著十分重要的作用.橢球常數(shù)的增加會使光整流系數(shù)峰值減小且峰值位置向光子能量小的方向移動.即相對于扁平形橢球量子點(diǎn),扁長形橢球量子點(diǎn)使光整流系數(shù)峰值減小并向光子能量小的方向移動.另外,外電場強(qiáng)度和量子點(diǎn)尺寸的增加使光整流系數(shù)峰值增加并向光子能量小的方向移動.相對于扁平形橢球量子點(diǎn),電場對扁長橢球量子點(diǎn)中的光整流效應(yīng)作用更加明顯.此外,我們還發(fā)現(xiàn)隨著A1組分的增加,光整流系數(shù)峰值單調(diào)遞減,而峰值位置向光子能量大的方向移動.其次,考慮了局域光學(xué)聲子和界面光學(xué)聲子分別與電子和雜質(zhì)的相互作用,通過對外電場下Zn1-xCdxSe/ZnSe球形量子點(diǎn)中極化子對非線性光整流效應(yīng)的影響研究發(fā)現(xiàn),極化子對光整流效應(yīng)有著十分明顯的影響.計(jì)算結(jié)果表明,在考慮極化子效應(yīng)后,光整流系數(shù)峰值明顯高于未考慮極化子效應(yīng)的情形,且光整流系數(shù)峰值產(chǎn)生紅移現(xiàn)象,尤其當(dāng)量子點(diǎn)尺寸或Cd組分較小時,產(chǎn)生的紅移更為明顯.另外,無論是否考慮極化子效應(yīng),量子點(diǎn)尺寸以及電場強(qiáng)度的增加會使光整流系數(shù)峰值增加并向光子能量小的方向移動.隨著Cd組分的增加,光整流系數(shù)峰值減小并向光子能量大的方向移動.此外,考慮極化子效應(yīng)與未考慮極化子效應(yīng)兩種情形下的光整流系數(shù)峰值差隨著電場強(qiáng)度的增加而增加,而隨Cd組分的增加而減小.另一方面,不同的光學(xué)聲子模式對光整流效應(yīng)影響不同,相比于局域聲子,界面聲子對光整流效應(yīng)產(chǎn)生的影響更為明顯.最后,通過對外電場下GaAs/AlxGa1-xAs球形量子點(diǎn)中激子非線性光整流效應(yīng)的研究,發(fā)現(xiàn)在考慮激子效應(yīng)后,光整流系數(shù)峰值明顯高于單電子態(tài)情形,而峰值位置沒有發(fā)生改變.考慮庫侖作用使激子光整流系數(shù)峰值增加并向光子能量高的方向移動.另外,隨著電場強(qiáng)度的增加,光整流系數(shù)峰值先增加后減小,且峰值位置向光子能量低的方向移動.隨著量子點(diǎn)尺寸的增加,光整流系數(shù)峰值增加并向光子能量小的方向移動.在考慮激子效應(yīng)后,隨著A1組分的增加,光整流系數(shù)峰值先增加后減小,而峰值位置向光子能量高的方向移動.
[Abstract]:Nonlinear optics is a very important branch of modern optics. It is an important subject developed after the emergence of laser. With the development of research, nonlinear optics has important application value in optical fiber communication, optical computing, spectral technology, laser technology and material structure analysis. As the ideal nonlinear optical materials require them to have faster response speed, larger nonlinear polarizability and smaller threshold power, a large number of scientific studies have proved that synthetic low dimensional semiconductor materials are in line with the above requirements. In the low dimensional semiconductor materials, the quantum local effect is due to the quantum local effect. It is of great significance to study the nonlinear optical properties of low dimensional semiconductor materials. In this paper, the characteristics of the nonlinear optical properties of the low dimensional semiconductor materials of the III - V and the II - VI family are presented in this paper. First, the variational method is used in the effective mass approximation. The nonlinear optical rectification effect in the GaN/AlxGa1-xN ellipsoidal quantum dots of the sphalerite structure under external electric field is studied. Secondly, we study the influence of the polaron in the spherical quantum dots on the nonlinear optical rectifying effect under the external electric field, and consider the interaction between the local optical phonon and the optical phonon of the interface with the electron and impurity. Finally, the study is made. The nonlinear optical rectifying effect of the exciton in a spherical quantum dot under an external electric field is obtained. The numerical results show that, due to the existence of the quantum local effect, a very obvious optical rectifying effect can be obtained in the ellipsoidal quantum dots. The shape of the ellipsoid, the size of the quantum dots, the applied electric field, and the A1 group are very important to the optical rectifying effect. The increase of the number will reduce the peak of the optical rectifying coefficient and move the peak position to the photon energy. That is, the flat long ellipsoid quantum dot reduces the peak of the light rectifying coefficient and moves to the direction of the photon energy. In addition, the increase of the external electric field intensity and the size of the quantum dot point increases the peak of the optical rectifying coefficient. The effect of the electric field on the light rectification effect in the flat ellipsoidal quantum dots is more obvious than that of the flat ellipsoidal quantum dots. Furthermore, we also find that the peak value of the optical rectifying coefficient decreases monotonically with the increase of the A1 component, and the peak position moves towards the light energy. Secondly, the local light is considered. The study of the interaction between the phonons and the optical phonons of the interface with the electrons and impurities respectively. Through the study of the influence of the polaron in the Zn1-xCdxSe/ZnSe spherical quantum dots on the nonlinear optical rectifying effect under the external electric field, it is found that the polaron has a very obvious effect on the optical rectifying effect. The peak value is obviously higher than that without the polaron effect, and the peak of the optical rectifying coefficient is red shift, especially when the size of the quantum dots or the Cd component is small, the red shift is more obvious. In addition, the increase in the quantum point size and the intensity of the electric field will increase the peak of the optical rectifying coefficient and to the photon energy. With the increase of the Cd component, the peak value of the optical rectifying coefficient decreases and moves to the direction of the photon energy. In addition, the peak difference of the optical rectifying coefficient under the polaron effect and the non considered polaron effect increases with the increase of the electric field intensity, but decreases with the increase of the Cd component. On the other hand, the difference is different. The effect of optical phonon mode on the optical rectification effect is different, compared with the local phonon, the influence of the interfacial phonon on the optical rectifying effect is more obvious. Finally, through the study of the exciton nonlinear optical rectification effect of the exciton in the GaAs/AlxGa1-xAs spherical quantum dots under the external electric field, it is found that the peak value of the optical rectifying coefficient is obviously higher than that after the exciton effect is considered. The peak position is not changed in the electronic state. The Coulomb effect makes the peak of the exciton light rectifying coefficient increase and move to the direction of high photon energy. In addition, with the increase of the intensity of the electric field, the peak value of the optical rectifying coefficient increases first and then decreases, and the peak position moves to the direction of low photon energy. With the increase of quantum dots, light is increased. The peak value of the rectifying coefficient increases and moves in the direction of the photon energy. After the exciton effect is considered, with the increase of the A1 component, the peak of the optical rectifying coefficient first increases and then decreases, while the peak position moves toward the direction of the photon energy.
【學(xué)位授予單位】:內(nèi)蒙古大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:O471.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前4條
1 俞友賓,郭康賢,于鳳梅;一種特殊的非對稱量子阱中的光整流效應(yīng)[J];量子電子學(xué)報;2003年03期
2 李德華;戚曉東;劉盛綱;;光整流法產(chǎn)生THz輻射轉(zhuǎn)化率的理論分析[J];中國科學(xué)(E輯:技術(shù)科學(xué));2009年04期
3 穆天嘯;王興東;張立;肖述文;楊科;;IF鋼光整色差成因有限元分析及其二次開發(fā)[J];計(jì)算機(jī)輔助工程;2013年S1期
4 ;[J];;年期
相關(guān)會議論文 前3條
1 劉金成;;平光整液廢水厭氧生物處理實(shí)驗(yàn)研究[A];自動化技術(shù)與冶金流程節(jié)能減排——全國冶金自動化信息網(wǎng)2008年會論文集[C];2008年
2 姚新改;軋剛;丁艷紅;;旋轉(zhuǎn)磁場磁力光整內(nèi)表面研磨機(jī)理研究[A];2007年中國機(jī)械工程學(xué)會年會之第12屆全國特種加工學(xué)術(shù)會議論文集[C];2007年
3 陳煜東;劉宇方;;本鋼二輥光整機(jī)鍍鋅生產(chǎn)工藝的探討[A];第二屆薄鋼板質(zhì)量研討會論文集[C];2002年
相關(guān)博士學(xué)位論文 前1條
1 馮振宇;半導(dǎo)體量子點(diǎn)中的非線性光整流效應(yīng)[D];內(nèi)蒙古大學(xué);2017年
相關(guān)碩士學(xué)位論文 前9條
1 梁津;不銹鋼閥套內(nèi)孔超聲輔助光整加工技術(shù)研究[D];大連理工大學(xué);2015年
2 魯帥帥;超聲波光整強(qiáng)化表層組織變形機(jī)理及力學(xué)性能研究[D];濟(jì)南大學(xué);2015年
3 朱智勇;超聲波光整強(qiáng)化工件表層組織結(jié)構(gòu)及性能改進(jìn)[D];濟(jì)南大學(xué);2016年
4 汪亮;等離子熔積直接成形金屬原型表面激光光整關(guān)鍵技術(shù)[D];華中科技大學(xué);2004年
5 秦建文;可控磁場磁力光整加工技術(shù)研究[D];大連理工大學(xué);2007年
6 孫鑒波;硅材料場致普克爾斯效應(yīng)和光整流效應(yīng)的研究[D];吉林大學(xué);2009年
7 周愿愿;齒輪化學(xué)機(jī)械光整加工技術(shù)研究[D];大連理工大學(xué);2010年
8 穆天嘯;IF鋼光整色差成因有限元分析及其二次開發(fā)[D];武漢科技大學(xué);2013年
9 翟洪飛;粘彈性磁性磨具的制備及其光整實(shí)驗(yàn)研究[D];太原理工大學(xué);2012年
,本文編號:1953976
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1953976.html