中高溫插入層對GaN基藍(lán)光LED光電性能的影響
本文選題:氮化鎵 + LED; 參考:《太原理工大學(xué)》2016年碩士論文
【摘要】:GaN基LED器件具有發(fā)光效率高、能耗低、體積小、顯色指數(shù)高等優(yōu)點(diǎn),在照明、顯示等領(lǐng)域的應(yīng)用越來越廣泛。盡管GaN基藍(lán)光LED中位錯密度高達(dá)108-1010/cm-2,卻有40-60%的光電轉(zhuǎn)換效率,這引起科研工作者的興趣。本文一方面以V形坑屏蔽位錯理論為基礎(chǔ),分析了V形坑尺寸對LED光電性能影響,另一方面分析了中高溫GaN插入層厚度對LED光電性能的影響。利用金屬有機(jī)氣相化學(xué)沉積(MOCVD)技術(shù)在藍(lán)寶石圖形襯底上生長GaN基藍(lán)光LED,1)通過改變中高溫GaN插入層厚度來調(diào)控V形坑尺寸,分析了V形坑尺寸對LED光電性能的影響,并對相關(guān)的物理機(jī)制進(jìn)行了探討;2)研究了具有溫度梯度插入層的LED器件的光電性能,分析了溫度梯度插入層影響LED器件的物理機(jī)理。具體研究結(jié)果如下:1)利用高分辨X射線衍射儀(HRXRD)、光致發(fā)光譜儀(PL)、芯片測試儀、原子力顯微鏡(AFM)表征了LED器件的結(jié)晶質(zhì)量、光電性能和表面形貌。當(dāng)中高溫GaN插入層厚度從60 nm增加至100 nm時,V形坑尺寸從70-110 nm增加至110-150 nm。V形坑尺寸增大對LED外延片的光學(xué)性能的影響為:當(dāng)激發(fā)功率從0.4mW增加至9mW時,峰值波長分別先紅移1.8nm和1 nm,然后均藍(lán)移2.8 nm。V形坑尺寸變大對LED器件的電學(xué)性能影響為:當(dāng)注入電流為20 mA時,LED芯片的光功率從21.9 mW增加至24.1 mW,當(dāng)注入電流從1 mA增加至40 mA時,LED芯片的峰值波長分別藍(lán)移6.5 nm、4.2 nm,半峰寬分別展寬5.9 nm、7.5 nm。通過對V形坑尺寸調(diào)控LED光電性能的相關(guān)物理機(jī)制進(jìn)行分析,增大V形坑尺寸有利于增加空穴注入面積和注入效率,進(jìn)而提高LED器件的光功率。2)利用高分辨X射線衍射儀(HRXRD)、光致發(fā)光譜儀(PL)、芯片測試儀表征LED器件的結(jié)晶質(zhì)量和光電性能。研究發(fā)現(xiàn):溫度梯度GaN插入層使LED外延片的HRXRD(002)面搖擺曲線的半峰寬從290減小至251arsec,(102)面半峰寬從281減小至242 arsec,PL積分強(qiáng)度增加了13.9%,在注入電流為20 mA下,芯片的整體光功率從31.2-32.0 mW增加至33.7-34.5 mW,正向偏壓降低約0.1 V。研究結(jié)果表明,插入層的溫度對LED的光電性能具有重要影響,溫度梯度插入層可有效釋放LED器件多量子阱中的應(yīng)力,進(jìn)而提高LED器件的光電轉(zhuǎn)換效率。
[Abstract]:GaN based LED devices have many advantages, such as high luminescence efficiency, low energy consumption, small volume and high color index, so they are widely used in lighting, display and other fields. Although the dislocation density in GaN based blue light LED is 108-1010 / cm-2, it has a conversion efficiency of 40-60%, which has attracted the interest of researchers. On the one hand, based on the theory of V-shaped pit shielding dislocations, the influence of the size of V-shaped pits on the photoelectric performance of LED is analyzed. On the other hand, the influence of the thickness of GaN intercalation layer at medium and high temperature on the optoelectronic properties of LED is analyzed. GaN based blue light LED1 was grown on sapphire graphic substrate by metal-organic vapor chemical deposition (MOCVD) technique. The size of V-shaped pit was adjusted by changing the thickness of GaN insertion layer at medium and high temperature. The effect of V-shaped pit size on the photoelectric properties of LED was analyzed. The optoelectronic properties of LED devices with temperature gradient insertion layer are investigated. The physical mechanism of the influence of temperature gradient insertion layer on LED devices is analyzed. The results are as follows: (1) the crystal quality, photoelectric properties and surface morphology of LED devices were characterized by high resolution X-ray diffractometer, photoluminescence spectrometer, chip tester and atomic force microscope (AFM). When the intercalation layer thickness of high temperature GaN increases from 60 nm to 100 nm, the effect of increasing the size of V-shaped pits from 70-110 nm to 110-150 nm.V pits on the optical properties of LED epitaxial wafers is as follows: when the excitation power is increased from 0.4mW to 9mW, The peak wavelengths are redshift 1.8nm and 1 nm, respectively, and then the blue shift of 2.8 nm.V hole size increases the electrical performance of LED devices. When the injection current is 20 Ma, the optical power of LED chip is increased from 21.9 MW to 24.1 MW, and when the injection current is from 1 to 1, the optical power of LED chip is increased from 21.9 MW to 24.1 MW. When Ma was increased to 40 Ma, the peak wavelength of LED chip shifted to 6.5 nm and 4.2 nm, respectively, and the half peak width widened by 5.9 nm and 7.5 nm, respectively. Based on the analysis of the physical mechanism of the V-shaped pit size regulating the optoelectronic performance of LED, it is found that increasing the V-shaped pit size is beneficial to increase the hole injection area and injection efficiency. The high resolution X-ray diffractometer, photoluminescence spectrometer and chip tester are used to characterize the crystal quality and optoelectronic properties of LED devices. It is found that the temperature gradient GaN intercalation layer decreases the half peak width of the LED wafer rocking curve from 290 to 251 arsecan 102) surface width from 281 to 242arsecl PL integral intensity increases by 13.9 cm / L at the injection current of 20 Ma. The overall optical power of the chip is increased from 31.2-32.0 MW to 33.7-34.5 MW, and the forward bias is reduced by 0.1 V. The results show that the temperature of the intercalation layer has an important effect on the optoelectronic performance of LED. The temperature gradient intercalation layer can effectively release the stress in multiple quantum wells of LED devices and improve the photoelectric conversion efficiency of LED devices.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TN312.8
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉一兵;;GaN基藍(lán)光LED峰值波長藍(lán)移現(xiàn)象分析及解決措施[J];湖南工業(yè)大學(xué)學(xué)報;2008年03期
2 彭應(yīng)全;范國瑩;周茂清;呂文理;王穎;;給-受體材料系統(tǒng)中光致發(fā)光的峰值波長隨濃度變化的理論(英文)[J];發(fā)光學(xué)報;2012年02期
3 莊榕榕;陳家鈺;魏婷婷;;LED光學(xué)特性的測量與研究[J];物理實(shí)驗(yàn);2008年11期
4 蔡偉智;LED峰值波長測試校驗(yàn)的探討[J];電子質(zhì)量;2005年06期
5 丁天平;郭偉玲;崔碧峰;尹飛;崔德勝;閆薇薇;;溫度對功率LED光譜特性的影響[J];光譜學(xué)與光譜分析;2011年06期
6 林巧明;郭霞;顧曉玲;梁庭;郭晶;沈光地;;GaN基藍(lán)光發(fā)光二極管峰值波長偏移的研究[J];半導(dǎo)體光電;2007年03期
7 崔劍;董小鵬;吳兆喜;蘇娟;林淦斌;王水生;;基于FBG實(shí)際反射譜匹配的FBG峰值波長偏移量的高精度確定方法[J];中國激光;2011年07期
8 ;新產(chǎn)品介紹[J];世界電子元器件;1996年05期
9 韋文生;;980nm半導(dǎo)體激光二極管的溫度特性[J];激光與紅外;2006年07期
10 劉偉華;隋青美;;基于粒子群算法的FBG峰值波長檢測技術(shù)[J];半導(dǎo)體光電;2007年06期
相關(guān)會議論文 前2條
1 呂正;呂亮;計(jì)忠瑛;胡炳梁;;單色LED峰值波長和輻射強(qiáng)度的穩(wěn)定性[A];海峽兩岸第十屆照明科技與營銷研討會專題報告文集[C];2003年
2 時清;;LED檢測[A];海峽兩岸第十屆照明科技與營銷研討會專題報告文集[C];2003年
相關(guān)碩士學(xué)位論文 前1條
1 劉青明;中高溫插入層對GaN基藍(lán)光LED光電性能的影響[D];太原理工大學(xué);2016年
,本文編號:1910386
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1910386.html