基于柔性基薄膜體聲波諧振器的研究
本文選題:薄膜體聲波諧振器 + 柔性基底 ; 參考:《電子科技大學(xué)》2017年碩士論文
【摘要】:近年來隨著無線通訊技術(shù)的不斷發(fā)展,薄膜體聲波器件在射頻前端應(yīng)用中的優(yōu)勢越來越明顯,其中薄膜體聲波諧振器是體聲波器件的基本組成部分。該類型諧振器是一種基于壓電技術(shù)的元器件,其尺寸極小,比單純以電磁波為傳播信號(hào)的元器件尺寸小4~5個(gè)數(shù)量級(jí);插損小,Q值高(可達(dá)1000以上);工作頻率高,可承受的功率容量比聲表面波器件更大;并且可以與CMOS工藝兼容。鑒于以上優(yōu)點(diǎn)薄膜體聲波諧振器技術(shù)迅速占領(lǐng)了射頻通信市場。同時(shí),在傳感器領(lǐng)域如生化檢測等方面也有著廣闊的應(yīng)用前景。按照限制聲波方式的不同,體聲波諧振器分為空氣隙型(FBAR)、固態(tài)裝配型(SMR)和硅背刻蝕型諧振器。傳統(tǒng)體聲波諧振器的制備工藝復(fù)雜、成本高。為了降低體聲波諧振器的工藝門檻,使其得到更廣泛的研究與應(yīng)用,本論文研究了基于柔性基底的體聲波諧振器。采用聲阻抗很小的柔性材料作為基底,這種基底可以高效的反射聲波,所以該類型諧振器無需制備工藝復(fù)雜的空腔結(jié)構(gòu)或布拉格反射層結(jié)構(gòu),這大大降低了體聲波諧振器的工藝難度與復(fù)雜度,同時(shí)拓寬了其應(yīng)用領(lǐng)域。本文首先從理論上分析了基于柔性基底體聲波諧振器的工作原理,完善了其理論基礎(chǔ)。提出了基于柔性基體聲波諧振器的三種實(shí)現(xiàn)形式:成品PI基底器件、勻膠固化式器件和凹槽填充式器件。并利用Comsol Multiphysics有限元仿真軟件對(duì)器件進(jìn)行了建模仿真,從器件的電學(xué)性能和熱力學(xué)性能兩大方面對(duì)器件進(jìn)行了仿真分析。發(fā)現(xiàn)采用聲阻抗極小的PI襯底在理論上也可以得到性能良好的器件,仿真發(fā)現(xiàn)直接以PI為襯底的器件Q值可以達(dá)到1300。在對(duì)勻膠固化式器件的仿真分析中得出結(jié)論:PI厚度過小時(shí)存在大量的反射波造成的寄生諧振模式,當(dāng)PI厚度達(dá)到10μm以上時(shí)寄生模量才能被有效抑制。隨著PI厚度的增加器件的有效機(jī)電耦合系數(shù)不斷增大,器件Q值有下降趨勢;在熱力學(xué)性能的分析中,發(fā)現(xiàn)對(duì)于勻膠固化式器件,PI層每增加2μm器件的最高穩(wěn)態(tài)溫度上升33K;凹槽填充式器件極大的優(yōu)化了器件的熱力學(xué)性能,同樣在PI厚度為10μm的條件下,比勻膠固化式器件的最高穩(wěn)態(tài)溫度降低142.44K。在理論分析的基礎(chǔ)上,對(duì)基于柔性基底的體聲波諧振器進(jìn)行了實(shí)驗(yàn)制備。首先對(duì)基于柔性基底上Mo電極層和AlN壓電層材料的最優(yōu)制備條件進(jìn)行了探索,對(duì)于Mo膜分別研究了濺射功率、壓強(qiáng)、氣體流量和基底溫度對(duì)薄膜性能的影響;對(duì)于AlN膜分別研究了濺射功率、基底溫度和氮?dú)夂繉?duì)薄膜性能的影響;發(fā)現(xiàn)了在水冷條件下制備的薄膜性能要優(yōu)于加熱條件下制備的薄膜性能這一特殊規(guī)律,得出了制備薄膜的最優(yōu)條件。最后基于該條件利用MEMS工藝對(duì)三種結(jié)構(gòu)的諧振器進(jìn)行了制備,最終成功制備出以成品PI為襯底的諧振器與勻膠固化式諧振器,并進(jìn)行了測試。
[Abstract]:In recent years, with the development of wireless communication technology, the advantages of thin film bulk acoustic devices in RF front-end applications are becoming more and more obvious, in which thin film bulk acoustic resonators are the basic components of bulk acoustic devices. This type of resonator is a kind of component based on piezoelectric technology. It has a very small size, which is 4 ~ 5 orders of magnitude smaller than that of a simple electromagnetic wave propagating signal, and has a high Q value (up to 1000 or more) and a high operating frequency. The acceptable power capacity is larger than the saw device, and is compatible with the CMOS process. In view of the above advantages, thin film bulk acoustic resonator technology has rapidly occupied the radio frequency communication market. At the same time, it also has a broad application prospect in the field of sensors such as biochemical detection. According to the different ways of limiting acoustic waves, bulk acoustic resonators are divided into air gap type (FBARA), solid-state assembly type (SMR) and silicon back etching type (SMR). The traditional bulk acoustic resonator has complex preparation process and high cost. In order to reduce the technological threshold of bulk acoustic resonator and make it more widely studied and applied, this paper studies the bulk acoustic resonator based on flexible substrate. A flexible material with a small acoustic impedance is used as the substrate, which can reflect sound waves efficiently, so the type of resonator does not need to prepare a complex cavity structure or a Bragg reflector structure. This greatly reduces the process difficulty and complexity of bulk acoustic resonator and widens its application field. In this paper, the working principle of acoustic resonator based on flexible substrate is analyzed theoretically, and the theoretical basis is improved. Three types of acoustic resonator based on flexible substrate are proposed: Pi substrate device, uniform curing device and groove-filled device. The Comsol Multiphysics finite element simulation software is used to model and simulate the device. The electrical and thermodynamic properties of the device are simulated and analyzed. It is found that the Pi substrate with minimal acoustic impedance can also be used to obtain the devices with good performance in theory. The simulation results show that the Q value of the device with Pi substrate directly can reach 1 300. In the simulation analysis of the homogenized solidified device, it is concluded that there exists a large number of parasitic resonance modes caused by a large number of reflected waves when the thickness of the Pi is too small, and the parasitic modulus can be effectively suppressed when the Pi thickness is more than 10 渭 m. With the increase of Pi thickness, the effective electromechanical coupling coefficient of the device increases, and the Q value of the device tends to decrease. It is found that the maximum steady-state temperature of the device increases 33K for every increase of 2 渭 m in the Pi layer, and the thermodynamics of the device is greatly optimized under the condition of Pi thickness of 10 渭 m, and the maximum steady-state temperature of the device is increased by 33K, and the thermodynamics of the device is greatly optimized when the Pi thickness is 10 渭 m. The maximum steady-state temperature is decreased by 142.44K. On the basis of theoretical analysis, the bulk acoustic resonator based on flexible substrate is fabricated experimentally. Firstly, the optimal preparation conditions of Mo electrode layer and AlN piezoelectric layer based on flexible substrate were investigated. The effects of sputtering power, pressure, gas flow rate and substrate temperature on the properties of Mo film were studied. The effects of sputtering power, substrate temperature and nitrogen content on the properties of AlN films were studied. The optimal conditions for the preparation of thin films were obtained. Finally, based on this condition, three kinds of resonators were fabricated by MEMS process. Finally, the resonators based on the finished Pi substrate and the homogenized cured resonators were successfully fabricated and tested.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN65
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 馬國政;徐濱士;王海斗;邢志國;張森;;磁控濺射制備Mo薄膜的優(yōu)化工藝和組織及性能研究[J];稀有金屬材料與工程;2014年09期
2 褚夫同;李川;汪振中;劉興釗;;鉬/聚酰亞胺異質(zhì)結(jié)上體聲波用氮化鋁薄膜生長(英文)[J];稀有金屬材料與工程;2013年10期
3 杜波;馬晉毅;江洪敏;楊靖;徐陽;;微聲薄膜耦合諧振濾波器有限元建模與仿真[J];壓電與聲光;2012年05期
4 江洪敏;馬晉毅;湯勁松;周勇;毛世平;于新曉;劉積學(xué);;2.8 GHz薄膜體聲波諧振器的研究[J];壓電與聲光;2010年01期
5 楊保和;徐娜;陳希明;薛玉明;李化鵬;;射頻磁控濺射生長C軸擇優(yōu)取向AlN壓電薄膜[J];光電子.激光;2007年12期
6 吳碧艷;;電極形狀對(duì)FBAR橫模特性的影響[J];傳感技術(shù)學(xué)報(bào);2006年05期
相關(guān)會(huì)議論文 前1條
1 黃光俊;石玉;楊杰;趙寶林;鐘慧;;薄膜體聲波諧振器(FBAR)的結(jié)構(gòu)制備工藝研究[A];第三屆全國壓電和聲波理論及器件技術(shù)研討會(huì)論文集[C];2008年
相關(guān)博士學(xué)位論文 前5條
1 焦向全;體聲波諧振器空腔結(jié)構(gòu)研究[D];電子科技大學(xué);2015年
2 程維維;基于薄膜體聲波諧振器(FBAR)技術(shù)的無線傳感集成系統(tǒng)研究[D];浙江大學(xué);2015年
3 楊杰;AlN壓電薄膜復(fù)合結(jié)構(gòu)研究[D];電子科技大學(xué);2014年
4 李侃;FBAR微質(zhì)量傳感器若干關(guān)鍵問題的研究[D];浙江大學(xué);2011年
5 金浩;薄膜體聲波諧振器(FBAR)技術(shù)的若干問題研究[D];浙江大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 賈振宇;SMR-FBAR布拉格反射柵復(fù)合薄膜結(jié)構(gòu)的制備及器件熱性能研究[D];哈爾濱工業(yè)大學(xué);2013年
2 王建東;SMR-FBAR壓電堆用Mo及AlN薄膜材料的研究[D];哈爾濱工業(yè)大學(xué);2012年
3 劉世潔;FBAR溫度傳感器研究[D];浙江大學(xué);2012年
4 吳夢(mèng)軍;FBAR及其振蕩器的研究[D];浙江大學(xué);2012年
5 胡念楚;溫度補(bǔ)償?shù)膲弘姳∧んw聲波濾波器[D];天津大學(xué);2011年
6 李彥睿;薄膜體聲波濾波器的研究和設(shè)計(jì)[D];電子科技大學(xué);2011年
7 汪振中;AIN薄膜中頻濺射制備及體聲波諧振器研制[D];電子科技大學(xué);2011年
8 吳勇;薄膜體聲波諧振器結(jié)構(gòu)分析與仿真[D];電子科技大學(xué);2007年
9 任燕;強(qiáng)瞬態(tài)第一類邊界條件下薄板熱應(yīng)力的非傅里葉分析[D];哈爾濱工程大學(xué);2007年
10 俞科挺;FBAR雙工器的分析和設(shè)計(jì)[D];浙江大學(xué);2006年
,本文編號(hào):1869040
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1869040.html