電磁場的集成光波導(dǎo)探測技術(shù)
本文選題:電場傳感器 + 磁場傳感器。 參考:《電子科技大學(xué)》2017年碩士論文
【摘要】:隨著電子技術(shù)的快速發(fā)展,集成光波導(dǎo)電磁場傳感器引起了越來越廣泛的關(guān)注。因其體積小,帶寬寬,抗電磁干擾等優(yōu)勢,因此在相關(guān)科學(xué)技術(shù)領(lǐng)域都得到了應(yīng)用,特別是在電磁兼容技術(shù)方向。本文基于集成光學(xué)的基本原理,使用鈮酸鋰作為材料,采用非對(duì)稱MZI波導(dǎo)結(jié)構(gòu),設(shè)計(jì)制作反射式集成光波導(dǎo)電磁場傳感器,并對(duì)其進(jìn)行測試、校準(zhǔn)。主要工作如下:(一)本文首先介紹基于鈮酸鋰電光效應(yīng)的MZI型集成電光強(qiáng)度調(diào)制器和集成光波導(dǎo)電磁場傳感器的原理。傳感器的線性工作點(diǎn)的穩(wěn)定對(duì)傳感器的各性能指標(biāo)起到關(guān)鍵作用,本文采用波長調(diào)諧的方式對(duì)工作點(diǎn)進(jìn)行控制,減小傳感器的工作點(diǎn)的漂移。(二)設(shè)計(jì)器件電極結(jié)構(gòu)。反射式集成光波導(dǎo)電場傳感器采用錐形偶極子電極結(jié)構(gòu),以求擴(kuò)大帶寬,改變結(jié)構(gòu)參數(shù)進(jìn)行數(shù)值仿真,由仿真結(jié)果得到最佳結(jié)構(gòu)參數(shù)。反射式集成光波導(dǎo)磁場傳感器則采用雙負(fù)載環(huán)形天線結(jié)構(gòu),同樣通過仿真結(jié)果分析獲得最佳結(jié)構(gòu)尺寸,兩種傳感器都是基于MZI結(jié)構(gòu)。(三)本文設(shè)計(jì)反射式非對(duì)稱MZI集成光波導(dǎo)電磁場傳感器,單光路傳輸,利用保偏環(huán)形器來連接激光光源,分路器和反射式波導(dǎo)傳感器,結(jié)構(gòu)更加緊湊,探頭體積減小,更易于裝配使用。(四)將傳感測量系統(tǒng)集成化,對(duì)電磁場傳感器進(jìn)行性能測試實(shí)驗(yàn)。由于EDFA的增益放大特性,因此本論文采用EDFA來作為光探測器的前置放大器,以求增大器件信噪比,提高傳感器的靈敏度。基于仿真結(jié)果設(shè)計(jì)反射式非對(duì)稱MZI型集成光波導(dǎo)電場傳感器,搭建電場傳感系統(tǒng),對(duì)傳感器的頻率響應(yīng)和線性動(dòng)態(tài)等進(jìn)行測試。將制作完成好的集成光波導(dǎo)電場傳感器放置在TEM cell內(nèi),在250 kHz~400 MHz范圍內(nèi)的進(jìn)行頻率響應(yīng)測試,保持TEM cell內(nèi)電場強(qiáng)度為11.2 V/m不變,測試結(jié)果表明電場傳感器的頻率響應(yīng)較為平坦。接著在0.044 V/m~7.9 V/m范圍內(nèi),對(duì)電場傳感器線的性動(dòng)態(tài)進(jìn)行測試實(shí)驗(yàn),此時(shí)頻率f(28)100 MHz,由測試結(jié)果可知傳感器的線性動(dòng)態(tài)效果較好。接著搭建高斯脈沖發(fā)生裝置,用電場傳感器探測高斯脈沖信號(hào),實(shí)驗(yàn)結(jié)果表明電場傳感器能夠較準(zhǔn)確地還原被測電場信號(hào);诜抡娼Y(jié)果設(shè)計(jì)反射式非對(duì)稱MZI型集成光波導(dǎo)磁場傳感器,并對(duì)磁場傳感器的頻率響應(yīng)和線性動(dòng)態(tài)等進(jìn)行測試實(shí)驗(yàn)。保持TEM cell內(nèi)磁場強(qiáng)度為0.03 A/m不變,在30 MHz~400 MHz范圍內(nèi),對(duì)器件的頻率響應(yīng)進(jìn)行測試,由實(shí)驗(yàn)可知其頻率響應(yīng)較為平坦。接著在0.003 A/m~0.02 A/m范圍內(nèi),對(duì)磁場傳感器進(jìn)行線性動(dòng)態(tài)測試實(shí)驗(yàn),此時(shí)頻率f(28)200 MHz,由測試結(jié)果可知,磁場傳感器的線性動(dòng)態(tài)效果較好。當(dāng)傳感系統(tǒng)的信噪比為3 dB時(shí),高量程反射式集成光波導(dǎo)電場傳感器的最小可探測電場強(qiáng)度為0.35 V/m,低量程反射式集成光波導(dǎo)電場傳感器的最小可探測電場強(qiáng)度為0.044 V/m。高量程反射式集成光波導(dǎo)電場傳感器的最小可探測脈沖場強(qiáng)度為6 KV/m,低量程反射式集成光波導(dǎo)電場傳感器的最小可探測脈沖場強(qiáng)度為0.35 KV/m。低量程反射式集成光波導(dǎo)磁場傳感器的最小可探測磁場強(qiáng)度為0.003A/m,高量程反射式集成光波導(dǎo)磁場傳感器的最小可探測磁場強(qiáng)度為0.005 A/m。
[Abstract]:With the rapid development of electronic technology, integrated optical wave conducting magnetic field sensor has attracted more and more attention. Because of its advantages of small size, wide bandwidth and anti electromagnetic interference, it has been applied in the field of related science and technology, especially in the direction of electromagnetic compatibility. This paper is based on the basic principle of integrated optics, using lithium niobate as a basic principle. For material, using asymmetric MZI waveguide structure, a reflective integrated light wave conductive magnetic field sensor is designed and fabricated and tested. The main work is as follows: firstly, the principle of MZI integrated electro-optic intensity modulator based on the electrooptic effect of lithium niobate and the principle of integrated light wave conducting magnetic field sensor are first introduced. The stability of the work point plays a key role in the performance index of the sensor. In this paper, the working point is controlled by wavelength tuning to reduce the drift of the working point of the sensor. (two) the structure of the electrode is designed. The electric field sensor of the reflective integrated optical waveguide adopts the conical dipole electrode structure, in order to enlarge the bandwidth and change the structure parameters. The optimal structure parameters are obtained from the simulation results. The reflective integrated optical waveguide magnetic field sensor uses a double loaded ring antenna structure, and the optimal structure size is obtained by the simulation results. The two sensors are based on the MZI structure. (three) the reflective asymmetric MZI integrated light wave conductive magnetic field sensor is designed in this paper. Single optical path transmission, using the polarization maintaining ring device to connect the laser light source, the shunt and the reflective waveguide sensor, the structure is more compact, the probe volume decreases, and the assembly is easier to use. (four) the sensor measurement system is integrated and the performance test of the electromagnetic field sensor is tested. Because of the gain amplification characteristic of EDFA, this paper uses EDFA As a preamplifier of the photodetector, in order to increase the signal to noise ratio of the device and improve the sensitivity of the sensor, based on the simulation results, a reflective asymmetric MZI type integrated optical waveguide electric field sensor is designed, and an electric field sensor system is built to test the frequency response and linear dynamic of the sensor. The completed integrated optical waveguide electric field will be made. The sensor is placed in TEM cell, the frequency response test within the range of 250 kHz~400 MHz is carried out, and the electric field intensity in TEM cell is kept unchanged at 11.2 V/m. The test results show that the frequency response of the electric field sensor is flat. Then the test experiment on the sexual dynamics of the electric field sensor line is carried out in the range of 0.044 V/m~7.9 V/m, and the frequency f (28) 1 is at this time. 00 MHz, from the test results, the linear dynamic effect of the sensor is better. Then the Gauss pulse generator is set up and the Gauss pulse signal is detected by the electric field sensor. The experimental results show that the electric field sensor can restore the electric field signal more accurately. Based on the simulation results, the asymmetric MZI type integrated optical waveguide magnetic field sensor is designed. The frequency response and linear dynamics of the magnetic field sensor are tested. The magnetic field intensity in TEM cell is 0.03 A/m constant and the frequency response of the device is tested in the range of 30 MHz~400 MHz. The frequency response is flat by the experiment. Then the magnetic field sensor is linearly moved in the range of 0.003 A/m~ 0.02 A/m. The frequency f (28) 200 MHz at this time shows that the linear dynamic effect of the magnetic field sensor is better. When the signal to noise ratio of the sensing system is 3 dB, the minimum detectable electric field intensity of the high range reflective integrated optical waveguide electric field sensor is 0.35 V/m, and the minimum exploration of the low range reflective integrated optical waveguide electric field sensor can be found. The minimum detectable pulse field intensity of the electric field sensor of 0.044 V/m. high range reflective integrated optical waveguide is 6 KV/m. The minimum detectable pulse field intensity of the low range reflective integrated optical waveguide electric field sensor is 0.35 KV/m. and the minimum detectable magnetic field intensity of the reflective integrated optical waveguide magnetic field sensor is 0.003. A/m, the minimum detectable magnetic field intensity of the high range reflective integrated waveguide magnetic field sensor is 0.005 A/m..
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP212;TN252
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 陳福深;陶厚超;孫豹;;帶雙負(fù)載環(huán)形天線的集成光波導(dǎo)磁場探測器[J];電子科技大學(xué)學(xué)報(bào);2009年01期
2 劉勝濤 ,尹宜柱;對(duì)信息技術(shù)設(shè)備電磁兼容技術(shù)的分析[J];電子質(zhì)量;2004年04期
3 涂有瑞;飛速發(fā)展的磁傳感器[J];傳感器技術(shù);1999年04期
4 韓秀清;高壓空間電場強(qiáng)度的光電測量系統(tǒng)[J];南昌大學(xué)學(xué)報(bào)(工科版);1998年01期
5 黃耀清,郝成宏;以磁致伸縮原理為基礎(chǔ)的光纖磁場傳感器的最新進(jìn)展[J];大慶高等專科學(xué)校學(xué)報(bào);1997年04期
6 李玉善,馬少杰,于濤,李永光,李德杰,,多田邦雄;檢測汽車點(diǎn)火系的Ti擴(kuò)散LiNbO_3光波導(dǎo)電場傳感器[J];高技術(shù)通訊;1995年01期
7 張叔鵬;玉義舉;;用超級(jí)寬帶TEM小室模擬開闊場地測試,獲取電磁發(fā)射的數(shù)據(jù)[J];電子測量技術(shù);1991年01期
相關(guān)博士學(xué)位論文 前1條
1 張家洪;集成光波導(dǎo)三維脈沖電場傳感系統(tǒng)研究[D];電子科技大學(xué);2016年
相關(guān)碩士學(xué)位論文 前4條
1 王磊;鈮酸鋰光波導(dǎo)正弦波電場傳感器的研究[D];電子科技大學(xué);2016年
2 李萬軍;集成光波導(dǎo)脈沖電場傳感器直流漂移控制技術(shù)研究[D];電子科技大學(xué);2014年
3 陳實(shí);基于電磁場理論的分段電極電場傳感器的特性研究[D];電子科技大學(xué);2010年
4 孫豹;寬帶集成光波導(dǎo)射頻全向電場傳感器的研究[D];電子科技大學(xué);2006年
本文編號(hào):1845611
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1845611.html