屏蔽腔體內(nèi)微帶電路的電磁干擾分析
本文選題:微帶線 + 非均勻FDTD ; 參考:《西南交通大學(xué)》2017年碩士論文
【摘要】:隨著現(xiàn)代電子設(shè)備的小型化、集成化,印制電路板(PCB)成為電子電氣設(shè)備的重要組成部分,并且置于屏蔽腔體內(nèi),而電路板上各元器件之間通過微帶線進(jìn)行連接以實(shí)現(xiàn)信息和能量的交換;然而,由于集成電路板的尺寸日益縮小,其上所含電子元件的數(shù)目卻越來越多,以至于微帶線的布局更加緊湊,布線的間距越來越窄。由于強(qiáng)電磁脈沖的頻譜越來越寬,干擾范圍愈加廣泛,電磁環(huán)境變得日益復(fù)雜。雖然印制電路板處于屏蔽腔體中,外界的強(qiáng)電磁脈沖仍然能夠穿過孔縫通過PCB板上的微帶線耦合進(jìn)入電路,對(duì)電子元件和設(shè)備電路造成損壞和干擾。因此,分析屏蔽腔體內(nèi)印制電路的電磁耦合問題具有十分重要的意義。論文首先對(duì)時(shí)域有限差分法(FDTD)的基本原理做了介紹,并結(jié)合非均勻網(wǎng)格劃分原理和多網(wǎng)格集總元件FDTD方法形成一種混合算法對(duì)微帶電路的電磁干擾問題進(jìn)行解決,建立電磁波空間照射平行耦合微帶線的電磁干擾模型,由于微帶電路上的微帶線和集總元件為精細(xì)結(jié)構(gòu),在計(jì)算空間的大區(qū)域采用粗網(wǎng)格剖分,然后在靠近微帶電路的區(qū)域采用漸變步長,網(wǎng)格漸變到微帶電路,對(duì)微帶電路板部分采用細(xì)網(wǎng)格剖分。考慮到實(shí)際電子元件的尺寸比細(xì)網(wǎng)格大,即集總元件需跨過多個(gè)網(wǎng)格,因此,在非均勻網(wǎng)格基礎(chǔ)上應(yīng)用集總元件多網(wǎng)格FDTD算法來模擬連接的集總元件,實(shí)現(xiàn)微帶電路板電磁耦合分析的快速計(jì)算。通過與均勻FDTD算法及商業(yè)仿真軟件相比較,驗(yàn)證混合算法的正確性。其次,計(jì)算和分析了簡(jiǎn)單微帶電路的電磁干擾特性。利用非均勻FDTD混合算法分別分析了空間電磁波極化角α、微帶線線間距d、微帶線線長l、微帶線寬度w的變化對(duì)平行雙線微帶電路端接負(fù)載上耦合電壓的影響。得到了自由空間里微帶電路的一些電磁耦合規(guī)律。最后,現(xiàn)代電子設(shè)備的集成電路大都處于屏蔽腔體中,考慮屏蔽腔體對(duì)微帶電路的電磁干擾影響。建立了平面波照射下屏蔽腔體內(nèi)微帶電路的電磁干擾模型,通過與商業(yè)仿真軟件仿真結(jié)果對(duì)比驗(yàn)證了混合算法的正確性,然后分析了屏蔽腔體的屏蔽效果、微帶線線間距d、微帶線的寬度w以及PCB板的擺放位置變化對(duì)微帶電路的電磁干擾影響,得到負(fù)載電阻上感應(yīng)電壓的變化規(guī)律,結(jié)果顯示,由于微帶電路結(jié)構(gòu)變化導(dǎo)致的電磁干擾特性在自由空間里和屏蔽腔體中一致。
[Abstract]:With the miniaturization and integration of modern electronic equipment, PCB (printed circuit board) becomes an important part of electronic and electrical equipment, and is placed in the shielding chamber. The components on the circuit board are connected by microstrip wires to exchange information and energy; however, because the size of the integrated circuit board is shrinking, the number of electronic components on the circuit board is increasing. So that the layout of the microstrip line is more compact, the spacing of the wiring is becoming narrower and narrower. Because the spectrum of strong electromagnetic pulse is wider and wider, the electromagnetic environment becomes more and more complex. Although the printed circuit board is in the shielded cavity, the external strong electromagnetic pulse can still be coupled through the aperture through the microstrip line on the PCB board, causing damage and interference to the electronic components and the circuit of the equipment. Therefore, it is of great significance to analyze the electromagnetic coupling of printed circuit in shielded cavity. In this paper, the basic principle of FDTD (finite difference time-domain method) is introduced, and a hybrid algorithm is formed to solve the electromagnetic interference problem of microstrip circuits by combining the principle of non-uniform mesh generation and the multi-grid lumped element FDTD method. The electromagnetic interference model of parallel coupled microstrip lines irradiated by electromagnetic waves in space is established. Due to the fine structure of microstrip lines and lumped elements on microstrip circuits, coarse grids are used in large areas of computing space. Then, in the area near the microstrip circuit, the gradual step size is adopted, the grid is gradually changed to the microstrip circuit, and the microstrip circuit board is subdivided into fine meshes. Considering that the size of the actual electronic component is larger than that of the fine grid, that is, the lumped element needs to cross more than one mesh, the lumped element multi-grid FDTD algorithm is applied to simulate the connected lumped element based on the non-uniform grid. The fast calculation of electromagnetic coupling analysis of microstrip circuit board is realized. The correctness of the hybrid algorithm is verified by comparison with uniform FDTD algorithm and commercial simulation software. Secondly, the electromagnetic interference characteristics of a simple microstrip circuit are calculated and analyzed. The effects of spatial electromagnetic wave polarization angle 偽, microstrip line spacing d, microstrip line length l and microstrip line width w on the coupling voltage at the termination load of parallel two-wire microstrip circuits are analyzed using the nonuniform FDTD hybrid algorithm, respectively. Some electromagnetic coupling laws of microstrip circuits in free space are obtained. Finally, the integrated circuits of modern electronic equipment are mostly in the shielding cavity, considering the influence of shielding cavity on the electromagnetic interference of microstrip circuit. The electromagnetic interference model of the microstrip circuit in the shielded cavity under plane wave irradiation is established. The correctness of the hybrid algorithm is verified by comparing the simulation results with the commercial simulation software, and then the shielding effect of the shielding cavity is analyzed. The effect of the microstrip wire spacing d, the width w of the microstrip line and the position change of the PCB board on the electromagnetic interference of the microstrip circuit is obtained. The variation of the inductive voltage on the load resistance is obtained. The results show that, The electromagnetic interference (EMI) characteristics due to the structural changes of microstrip circuits are consistent with those in the shielded cavity in free space.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN03;TN41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王曉靜;葉明;馬燕;;平行互連線間串?dāng)_問題的研究[J];電子測(cè)量技術(shù);2015年01期
2 王永峰;于成大;陳政新;李明;;印制線抗電磁干擾模型分析與計(jì)算[J];強(qiáng)激光與粒子束;2014年07期
3 李永亮;閆曉鵬;郝新紅;岳凱;金星;;超寬帶電磁脈沖對(duì)典型引信的耦合效應(yīng)研究[J];強(qiáng)激光與粒子束;2014年07期
4 張?zhí)m勇;劉繁明;李冰;;印制電路板電磁輻射等效偶極子建模與預(yù)測(cè)[J];儀器儀表學(xué)報(bào);2013年04期
5 李春榮;袁奇?zhèn)?王新政;呂懷武;;非均勻微帶線電磁脈沖耦合特性分析[J];電訊技術(shù);2012年10期
6 毛劍波;黃正峰;楊明武;汪濤;宣曉峰;;微帶線不連續(xù)性輻射研究[J];電子測(cè)量與儀器學(xué)報(bào);2012年05期
7 王勝源;李玉山;曹劍中;;混合有限差分方法及其在微帶電路分析中的應(yīng)用[J];儀器儀表學(xué)報(bào);2010年07期
8 趙海洲;李煙;;含集總元件的微帶電路FDTD仿真[J];現(xiàn)代電子技術(shù);2009年21期
9 陳建華;牛中奇;;基于FDTD方法的微帶線耦合噪聲研究[J];電波科學(xué)學(xué)報(bào);2009年02期
10 覃宇建;周東明;何建國;;BLT方程在任意布局傳輸線串?dāng)_分析中的應(yīng)用[J];國防科技大學(xué)學(xué)報(bào);2009年02期
相關(guān)碩士學(xué)位論文 前7條
1 康振輝;基于FDTD算法的非均勻網(wǎng)格及共形網(wǎng)格技術(shù)的研究[D];西北師范大學(xué);2015年
2 鐘群花;FDTD在微波電路中的應(yīng)用[D];南京理工大學(xué);2009年
3 何峰;集總元件FDTD的模擬與研究[D];中國傳媒大學(xué);2008年
4 趙興華;FDTD在微帶電路中的應(yīng)用研究[D];西安電子科技大學(xué);2008年
5 曾碧能;基于FDTD算法的非均勻網(wǎng)格及共形網(wǎng)格技術(shù)的實(shí)現(xiàn)[D];電子科技大學(xué);2007年
6 程剛;應(yīng)用FDTD-SPICE技術(shù)的高速互連結(jié)構(gòu)時(shí)域分析[D];電子科技大學(xué);2004年
7 倪慧娟;非均勻網(wǎng)格的時(shí)域有限差分算法[D];西安電子科技大學(xué);2001年
,本文編號(hào):1782663
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1782663.html