三維嵌入式芯核測(cè)試外殼優(yōu)化方法
本文選題:三維測(cè)試外殼 切入點(diǎn):硅通孔 出處:《合肥工業(yè)大學(xué)》2015年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:隨著集成電路工藝技術(shù)的發(fā)展,品體管尺寸逐漸減小,互連線的延遲超過(guò)了邏輯門(mén)的延遲,成為提升系統(tǒng)性能的主要瓶頸,三維集成電路(Three-Dimension Integrated Circuit,3D IC)能顯著減低互連線延遲和系統(tǒng)功耗,成為一種有效解決互連線問(wèn)題的方法。三維片上系統(tǒng)(Three-Dimension System-on-a-chip,3D SoC)結(jié)合了3D IC和片上系統(tǒng)(System-on-a-chip, SoC)的優(yōu)點(diǎn),逐漸成為集成電路領(lǐng)域的主流。3D SoC有粗[粒度劃分和細(xì)粒度劃分兩種劃分方式。在粗粒度劃分中,3D SoC上的嵌入式芯核是按照二維的方法設(shè)計(jì);在細(xì)粒度劃分中,每個(gè)嵌入式芯核包含多層電路。細(xì)粒度劃分的3D SoC能有效的減少時(shí)間延遲并提升性能,但給三維測(cè)試外殼的設(shè)計(jì)帶來(lái)了很大困難。對(duì)測(cè)試外殼的設(shè)計(jì)直接決定了SoC的測(cè)試時(shí)間。本論文主要目的就是設(shè)計(jì)測(cè)試外殼的優(yōu)化方法來(lái)減少3D SoC的測(cè)試時(shí)間,主要?jiǎng)?chuàng)新點(diǎn)和貢獻(xiàn)如下:1.提出在TSVs與測(cè)試襯墊數(shù)量限制下,總測(cè)試時(shí)間和硬件開(kāi)銷(xiāo)協(xié)同優(yōu)化的算法本文提出了在硅通孔(Through-silicon-vias, TSVs)數(shù)量和測(cè)試襯墊(test pad)數(shù)量限制下,減少3D SoC綁定前后總測(cè)試時(shí)間的3DTW0 (3D test wrapper optimization)算法,該算法將每條綁定前的測(cè)試外殼掃描鏈作為一個(gè)整體,將其分配到各電路層和綁定后的測(cè)試外殼掃描鏈,以減少總的測(cè)試時(shí)間和硬件開(kāi)銷(xiāo)。同時(shí)平衡綁定前和綁定后測(cè)試外殼掃描鏈,而不是分開(kāi)優(yōu)化綁定前和綁定后的測(cè)試外殼,這是本方法的一個(gè)特色。在ITC'02基準(zhǔn)電路上的實(shí)驗(yàn)結(jié)果表明,與文獻(xiàn)[24]的經(jīng)典算法相比,本方法極大的降低了SoC的總測(cè)試時(shí)間,并且所用的硬件開(kāi)銷(xiāo)也不多。2.提出了在TSVs數(shù)量限制下的三維測(cè)試外殼優(yōu)化算法本文基于BFD(Best Fit Decreasing)和遺傳算法(Genetic Algorithm, GA),提出BGA(BFD and GA)方法在TSVs數(shù)量的約束下優(yōu)化三維測(cè)試外殼,以減少三維嵌入式芯核總的測(cè)試時(shí)間。BGA方法首先利用BFD算法來(lái)平衡綁定前各條測(cè)試外殼掃描鏈,以減少綁定前測(cè)試時(shí)間,然后在綁定前測(cè)試外殼掃描鏈優(yōu)化好的基礎(chǔ)上,利用遺傳算法在TSVs數(shù)量的約束下來(lái)平衡綁定后的各條測(cè)試外殼掃描鏈,以減少綁定后的測(cè)試時(shí)間。并且BGA方法對(duì)綁定后測(cè)試外殼的優(yōu)化是在綁定前測(cè)試外殼優(yōu)化的基礎(chǔ)上,減少了掃描鏈重構(gòu)所需的硬件開(kāi)銷(xiāo)。在ITC'02基準(zhǔn)電路上的實(shí)驗(yàn)結(jié)果可知, BGA方法使SoC的測(cè)試總時(shí)間稍微有所增加,但大幅度減少了硬件開(kāi)銷(xiāo)。3.提出了減少3D SoC總測(cè)試時(shí)間的優(yōu)化算法本文將減少3D SoC測(cè)試總時(shí)間為第一優(yōu)化目的,利用BFD和AL (Allocate Layer)算法將掃描元素分配到測(cè)試外殼掃描鏈和層上。此方法首先將三維嵌入式芯核的所有掃描元素投影到一個(gè)平面上,用BFD算法將掃描元素分配到各條測(cè)試外殼掃描鏈,以減少綁定后的測(cè)試時(shí)間。再用提出的AL算法將掃描元素分配到各層電路中,使得綁定前各條測(cè)試外殼掃描鏈的長(zhǎng)度也能夠平衡,以減少綁定前的測(cè)試時(shí)間和所需TSVs的數(shù)量,并且AL算法能夠使得各層電路所含的掃描元素總長(zhǎng)度盡可能的相等。在ITC'02基準(zhǔn)電路上的實(shí)驗(yàn)結(jié)果表明,本文提出的方法減少了測(cè)試總時(shí)間,并且使三維嵌入式芯核各層電路所含掃描元素的總長(zhǎng)度更加均勻。
[Abstract]:With the development of integrated circuit technology, transistor size decreases, the interconnect delay exceeds the delay of logic gates, has become a major bottleneck to improve the performance of the system, the three-dimensional integrated circuit (Three-Dimension Integrated Circuit, 3D IC) can significantly reduce the interconnect delay and power consumption of the system, a method of a effective solution to each other line. The 3D system on chip (Three-Dimension System-on-a-chip, 3D SoC) combined with IC and 3D system on chip (System-on-a-chip, SoC) has gradually become a "coarse granularity and fine grained division two division of integrated circuit in the field of mainstream.3D SoC. In coarse granularity, embedded core 3D SoC the design is in accordance with the two methods; in the fine-grained classification, each embedded core contains a multilayer circuit. Fine grained division 3D SoC can effectively reduce the time delay and improve the performance, but It is difficult to design a three-dimensional test case. The test case design directly determines the test time of SoC optimization method. The main purpose of this paper is to design test case to reduce the test time of 3D SoC, the main innovations and contributions are as follows: 1. in TSVs is put forward and a testing pad under a number of constraints, the total test time the hardware overhead and collaborative optimization algorithm is presented in this paper through silicon vias (Through-silicon-vias, TSVs) and the number of test pads (test pad) the number of constraints, reduce the total test time before and after 3D SoC binding 3DTW0 (3D test wrapper optimization) algorithm, the algorithm will scan chain test case before each binding as a whole and distribute it to the wrapper scan chain circuit layer and binding, to reduce the test time and hardware overhead. At the same time the total balance before and after binding, binding test shell scan chain Instead, separate the test before and after optimization of shell binding binding, which is a feature of the method. The experimental results on ITC'02 benchmark circuits show that compared with the classical algorithm of [24], this method greatly reduces the total test time of SoC, and the hardware overhead is not much.2. based on the TSVs limit on the number of the three-dimensional test shell optimization algorithm based on BFD (Best Fit Decreasing) and genetic algorithm (Genetic Algorithm GA), BGA (BFD and GA) proposed method of 3D test shell optimization in the number of TSVs constraints, to reduce the three-dimensional embedded core test of general.BGA method first time using BFD algorithm to balance the test case before binding the scan chain to reduce test time and test before binding, a good case based scan chain optimization in the bound before, using the genetic algorithm in the number of TSVs about balance beam tied down The scan chain test shell after calibration, in order to reduce the test time bound. And the BGA method to optimize the binding test of the housing is based on Optimization of the binding test shell, reducing the scan chain reconfiguration required hardware overhead. Experimental results on ITC'02 benchmark circuits show that the BGA method to test the total the time of SoC increased slightly, but greatly reduces the hardware overhead of.3. is proposed to reduce the 3D SoC optimization algorithm for the total test time will be reduced by 3D SoC for the first time the total test optimization purposes, the use of BFD and AL (Allocate Layer) algorithm will scan the elements assigned to the test scan chain and shell layer. This method first all the elements of 3D embedded core scanning projection onto a plane, using the BFD algorithm will scan the elements assigned to each test case scan chain, in order to reduce the test time. Then put forward after binding AL The algorithm will scan the elements assigned to each layer in the circuit, so that the test case bound before the scan chain length to balance, to reduce the test time bound before and the required number of TSVs, the total length of the scan element and the AL algorithm can make the circuit layer contains as much as possible in the ITC'02 benchmark circuits are equal. The experimental results show that the proposed method reduces the total test time, and the total length of the three-dimensional embedded core circuit of each layer contains scanning elements more uniform.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TN407
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 易茂祥;梁華國(guó);陳田;;基于最佳交換遞減的芯核測(cè)試鏈平衡劃分[J];電子測(cè)量與儀器學(xué)報(bào);2009年04期
2 李積惠;王紅;楊士元;;自保持接口在模擬芯核虛數(shù)字化測(cè)試中的優(yōu)化[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年S1期
3 田輝,楊華中,汪蕙;完全搜索塊匹配和圖像空域?yàn)V波的可重構(gòu)芯核[J];微電子學(xué);2002年06期
4 龔雪皓,鄭學(xué)仁,劉百勇;專(zhuān)用集成電路設(shè)計(jì)中的芯核和設(shè)計(jì)復(fù)用技術(shù)[J];微電子學(xué);2000年02期
5 Chester Simpson;;跟蹤芯核工作電壓一半數(shù)值的端接電壓源[J];電子設(shè)計(jì)技術(shù);2000年12期
6 陳靜華,陳迪平,徐勇軍,張志敏,李曉維;面向芯核設(shè)計(jì)的功耗層次化管理策略[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2005年05期
7 ;技術(shù)資源[J];電子設(shè)計(jì)技術(shù);1999年06期
8 靳洋;王紅;楊士元;呂政良;鄭焱;;數(shù);旌掀舷到y(tǒng)模擬芯核并行測(cè)試結(jié)構(gòu)[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2010年11期
9 陳圣儉;李廣進(jìn);高華;;基于外殼架構(gòu)與測(cè)試訪問(wèn)機(jī)制的數(shù)字芯核可測(cè)試性設(shè)計(jì)[J];微電子學(xué)與計(jì)算機(jī);2012年06期
10 楊震;SOC設(shè)計(jì)中的關(guān)鍵技術(shù)[J];電子科技;2001年17期
相關(guān)會(huì)議論文 前5條
1 李積惠;王紅;楊士元;;自保持接口在模擬芯核虛數(shù)字化測(cè)試中的優(yōu)化研究[A];第十四屆全國(guó)容錯(cuò)計(jì)算學(xué)術(shù)會(huì)議(CFTC'2011)論文集[C];2011年
2 吳明行;韓銀和;胡瑜;李曉維;;基于CTL韻SOC IP核的測(cè)試技術(shù)[A];第三屆中國(guó)測(cè)試學(xué)術(shù)會(huì)議論文集[C];2004年
3 葉凡;王雪靜;李寧;任俊彥;;適用于八端口集成的10/100Base-TX快速以太網(wǎng)物理層嵌入式芯核[A];中國(guó)通信集成電路技術(shù)與應(yīng)用研討會(huì)文集[C];2006年
4 時(shí)萬(wàn)春;;系統(tǒng)芯片(SOC)測(cè)試[A];2004全國(guó)測(cè)控、計(jì)量與儀器儀表學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2004年
5 胡瑜;韓銀和;李華偉;呂濤;李曉維;;基于對(duì)平衡的SOC測(cè)試調(diào)度算法[A];第三屆中國(guó)測(cè)試學(xué)術(shù)會(huì)議論文集[C];2004年
相關(guān)重要報(bào)紙文章 前2條
1 ;SOC發(fā)展關(guān)鍵與策略[N];中國(guó)電子報(bào);2001年
2 吳映紅;納米芯片 躍躍欲“市”[N];中國(guó)電子報(bào);2001年
相關(guān)博士學(xué)位論文 前3條
1 易茂祥;系統(tǒng)芯片測(cè)試應(yīng)用時(shí)間最小化技術(shù)研究[D];合肥工業(yè)大學(xué);2010年
2 胡兵;系統(tǒng)芯片(SOC)內(nèi)嵌數(shù)字芯核的測(cè)試數(shù)據(jù)壓縮技術(shù)研究[D];電子科技大學(xué);2005年
3 曹貝;SoC低功耗測(cè)試技術(shù)和溫度意識(shí)測(cè)試規(guī)劃研究[D];哈爾濱工業(yè)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前6條
1 錢(qián)慶慶;三維嵌入式芯核測(cè)試外殼優(yōu)化方法[D];合肥工業(yè)大學(xué);2015年
2 楊年宏;基于三維結(jié)構(gòu)的SoC低功耗測(cè)試技術(shù)研究[D];合肥工業(yè)大學(xué);2011年
3 何葉東;IP芯核設(shè)計(jì)和驗(yàn)證技術(shù)的研究[D];合肥工業(yè)大學(xué);2005年
4 陳召會(huì);SOC可測(cè)性結(jié)構(gòu)的研究與實(shí)現(xiàn)[D];哈爾濱理工大學(xué);2010年
5 梅春雷;優(yōu)化SoC測(cè)試性能的測(cè)試數(shù)據(jù)重組技術(shù)研究[D];合肥工業(yè)大學(xué);2012年
6 魏巖;SOC中可復(fù)用IP核的測(cè)試技術(shù)與應(yīng)用[D];哈爾濱理工大學(xué);2009年
,本文編號(hào):1583783
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1583783.html