SMD元器件檢測(cè)設(shè)備控制系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)
本文選題:控制系統(tǒng) 切入點(diǎn):貼片元器件檢測(cè) 出處:《華中科技大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:目前表面貼裝技術(shù)(SMT)中,表面貼裝元器件(SMD)貼片工序之前存在難以對(duì)SMD的性能全自動(dòng)檢測(cè)的工藝盲點(diǎn),本課題針對(duì)SMD全自動(dòng)檢測(cè)設(shè)備開(kāi)發(fā)需求,研究并設(shè)計(jì)了對(duì)應(yīng)控制系統(tǒng)。本文主要研究SMD高精度拾放策略、誤差補(bǔ)償和機(jī)械手轉(zhuǎn)移軌跡規(guī)劃等相關(guān)難點(diǎn),具體概況如下:1、提出了檢測(cè)元器件光電性能的方案,基于SMD元器件特性分析和轉(zhuǎn)移面臨的工況,提出了檢測(cè)設(shè)備的設(shè)計(jì)指標(biāo)。對(duì)控制系統(tǒng)整體架構(gòu)進(jìn)行了比較分析和選擇,確定了“IPC+運(yùn)動(dòng)控制卡”控制模式;完成了控制系統(tǒng)關(guān)鍵部件選型和檢測(cè)設(shè)備的完整動(dòng)作流程設(shè)計(jì)。2、建立了元器件轉(zhuǎn)移誤差補(bǔ)償模型。分析了元器件檢測(cè)流程中的視覺(jué)可測(cè)誤差和設(shè)備固有誤差,針對(duì)難以避免誤差,為元器件的拾取補(bǔ)償和放回補(bǔ)償建立了誤差補(bǔ)償模型。基于視覺(jué)處理參數(shù)辨識(shí)方法,通過(guò)最小二乘法對(duì)旋轉(zhuǎn)軸誤差進(jìn)行橢圓擬合,給出相機(jī)坐標(biāo)系誤差量計(jì)算公式。3、提出了多夾具和并行方案,縮短了運(yùn)動(dòng)流程整體耗時(shí)。針對(duì)載帶位至夾具位的長(zhǎng)距離高速度高加速度轉(zhuǎn)移過(guò)程,從定位精度、運(yùn)動(dòng)耗時(shí)和系統(tǒng)柔性和沖擊多方面考慮,分別對(duì)比梯形、S型和三角函數(shù)速度曲線的運(yùn)動(dòng)過(guò)程,仿真了所提出的運(yùn)動(dòng)軌跡,結(jié)論為:S曲線具有較優(yōu)的運(yùn)行時(shí)間和系統(tǒng)柔性。4、實(shí)驗(yàn)驗(yàn)證并實(shí)現(xiàn)了所提出的SMD元器件檢測(cè)設(shè)備的控制系統(tǒng)方案。驗(yàn)證結(jié)果表明:點(diǎn)到點(diǎn)運(yùn)動(dòng)中長(zhǎng)距離高速度高加速度轉(zhuǎn)移過(guò)程,相對(duì)梯形曲線和三角函數(shù)曲線,S曲線具有最優(yōu)的定位精度和運(yùn)動(dòng)時(shí)間。所提方案通過(guò)了0201電容,0603LED和1206電阻等多類型SMD元器件實(shí)際測(cè)試,可以滿足高精度拾取和放回等轉(zhuǎn)移過(guò)程要求。本文所設(shè)計(jì)面向SMD元器件檢測(cè)設(shè)備的控制系統(tǒng),具有較好的實(shí)用價(jià)值,已得到實(shí)際檢測(cè)設(shè)備充分驗(yàn)證。
[Abstract]:At present, in the surface mount technology (SMT), there are some blind spots in the process of surface mount component SMD patch, which is difficult to automatically detect the performance of SMD. This subject aims at the development of SMD automatic testing equipment. The corresponding control system is studied and designed. This paper mainly studies the SMD high-precision pickup strategy, error compensation and manipulator transfer trajectory planning and other related difficulties. The specific overview is as follows: 1. Based on the characteristic analysis and transition of SMD components, the design index of testing equipment is put forward. The overall structure of the control system is comparatively analyzed and selected, and the control mode of "IPC motion control card" is determined. The selection of key components of the control system and the design of the complete action flow of the detecting equipment are completed. The compensation model of the component transfer error is established. The visual measurable error and the inherent error of the device are analyzed. Aiming at the difficulty of avoiding errors, the error compensation model is established for pickup compensation and return compensation of components. Based on the identification method of visual processing parameters, the rotation axis error is elliptically fitted by least square method. In this paper, the calculation formula of camera coordinate system error error. 3 is given, and a multi fixture and parallel scheme is proposed, which shortens the whole time of motion flow. For the long distance, high speed and high acceleration transfer process from the carrier to the clamp position, the positioning accuracy is obtained. Considering the motion time consuming and system flexibility and impact, the motion process of trapezoidal S-shaped and trigonometric function velocity curves is compared, and the proposed motion trajectory is simulated. Conclusion: the ratio S curve has better running time and system flexibility. The proposed control system scheme of SMD component detection equipment is verified and realized experimentally. The verification results show that the long distance high speed and high acceleration transfer process in point-to-point motion is achieved. Compared with trapezoidal curve and trigonometric function curve S curve, the proposed scheme has the optimum positioning accuracy and motion time. The proposed scheme has passed the practical tests of 0201 capacitors 0603LED and 1206 resistors, etc. The control system designed in this paper for SMD components detection equipment has good practical value and has been fully verified by the actual detection equipment.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN05;TP273
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李永清;;表面安裝器件SMD貼裝工藝研究[J];中國(guó)科技信息;2011年16期
2 ;第二屆國(guó)SMT/SMD學(xué)術(shù)研討會(huì)[J];電子科技導(dǎo)報(bào);1994年01期
3 孫迎春;周文俊;;松下FP-X PLC在SMD晶體自動(dòng)分選系統(tǒng)中的應(yīng)用[J];電子技術(shù);2009年11期
4 劉丹;;廢棄電路板SMD元件熱拆除工藝實(shí)驗(yàn)研究[J];再生資源與循環(huán)經(jīng)濟(jì);2011年08期
5 ;SMD元器件的載帶系統(tǒng)[J];世界電子元器件;2001年09期
6 ;戶內(nèi)高端全彩SMD顯示屏的領(lǐng)導(dǎo)者——雷曼黑美人系列SMD[J];現(xiàn)代顯示;2012年02期
7 毛瑞石;;貼片元器件(SMD)的抽樣檢測(cè)方法研究[J];科技廣場(chǎng);2012年02期
8 齊俊兵,曹開(kāi)玉;SMD-5型2Mb/s光纖通信系統(tǒng)故障分析與排除[J];電信技術(shù);1995年09期
9 竇洪海;班定平;;全自動(dòng)SMD晶體元件編帶機(jī)總體設(shè)計(jì)[J];機(jī)電工程技術(shù);2009年03期
10 ;利用TrenchMOS技術(shù)把邏輯級(jí)器件納入超小型SMD封裝中[J];電子設(shè)計(jì)技術(shù);1998年03期
相關(guān)會(huì)議論文 前1條
1 王樹(shù)金;;硅微極探測(cè)器(SMD)的前端電子學(xué)及數(shù)據(jù)獲取系統(tǒng)[A];第7屆全國(guó)核電子學(xué)與核探測(cè)技術(shù)學(xué)術(shù)年會(huì)論文集(二)[C];1994年
相關(guān)重要報(bào)紙文章 前2條
1 郭雅慧;SMD多層電感的發(fā)展趨勢(shì)[N];電子資訊時(shí)報(bào);2005年
2 黃女瑛/DigiTimes 專稿;SMD芯片磁珠市場(chǎng)搏殺激烈[N];電子資訊時(shí)報(bào);2005年
相關(guān)碩士學(xué)位論文 前1條
1 姜浩;SMD元器件檢測(cè)設(shè)備控制系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];華中科技大學(xué);2015年
,本文編號(hào):1577744
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1577744.html