基于FPGA的小型神經(jīng)元網(wǎng)絡的模擬與實現(xiàn)
發(fā)布時間:2018-02-24 18:34
本文關鍵詞: 生物神經(jīng)元網(wǎng)絡 Hodgkin-Huxley模型 化學突觸 數(shù)值模擬 現(xiàn)場可編程門陣列 出處:《蘭州交通大學》2017年碩士論文 論文類型:學位論文
【摘要】:神經(jīng)元是構成神經(jīng)系統(tǒng)的基本單元,其主要功能是接收、整理和傳遞神經(jīng)信息;突觸是實現(xiàn)神經(jīng)元與神經(jīng)元之間信息傳遞的重要結構。神經(jīng)沖動的傳導與傳遞是研究神經(jīng)系統(tǒng)功能的重要方面。本文主要以神經(jīng)元與化學突觸構成的神經(jīng)元網(wǎng)絡為研究對象。采用具有生物神經(jīng)元電生理特性的Hodkgin-Huxley模型作為神經(jīng)元數(shù)學模型,采用興奮的Rabinovich模型作為突觸得數(shù)學模型,對規(guī)則的神經(jīng)元鏈網(wǎng)絡與神經(jīng)元環(huán)網(wǎng)絡進行仿真模擬和硬件實現(xiàn)。具體包含如下內(nèi)容:(1)神經(jīng)元網(wǎng)絡基礎及其數(shù)學模型。主要介紹神經(jīng)元與突觸相關的基礎知識。對神經(jīng)回路與小型神經(jīng)元網(wǎng)絡的關系進行詳細闡述。對神經(jīng)電信號在神經(jīng)元網(wǎng)絡中的產(chǎn)生與傳播以及神經(jīng)元細胞膜兩側電位的分類進行說明。概括現(xiàn)在建模主要采用的神經(jīng)元模型以及突觸模型。(2)神經(jīng)元網(wǎng)絡的仿真模擬研究。對HH神經(jīng)元模型與Rabinovich突觸模型組成的輻散神經(jīng)元網(wǎng)絡、聚合神經(jīng)元網(wǎng)絡、神經(jīng)元鏈網(wǎng)絡與神經(jīng)元環(huán)網(wǎng)絡進行仿真模擬。研究突觸耦合強度對神經(jīng)電信號的輻散傳播的影響,聚合作用對神經(jīng)元動作電位的影響;采用不同的刺激電流對神經(jīng)元鏈網(wǎng)絡和神經(jīng)元環(huán)網(wǎng)絡進行刺激,探索在不同刺激下,神經(jīng)電信號在神經(jīng)元網(wǎng)絡中的傳播機制,并對DSP Builder與simulink軟件仿真的一致性進行驗證。(3)神經(jīng)元網(wǎng)絡的硬件實現(xiàn)。運用FPGA(Field Programmable Gate Array,現(xiàn)場可編程門陣列)對HH神經(jīng)元模型與Rabinovich突觸模型組成的神經(jīng)元鏈網(wǎng)絡與神經(jīng)元環(huán)網(wǎng)絡進行硬件實現(xiàn)。依據(jù)仿真描述的神經(jīng)元網(wǎng)絡,運用QUARTUSⅡ軟件結合DSP Builder技術,完成神經(jīng)元鏈網(wǎng)絡與神經(jīng)元環(huán)網(wǎng)絡的FPGA硬件實現(xiàn)。對神經(jīng)元網(wǎng)絡硬件施加不同的電流刺激,得到神經(jīng)元網(wǎng)絡的硬件實現(xiàn)結果。對比神經(jīng)元網(wǎng)絡的硬件實現(xiàn)結果與仿真模擬結果,對硬件實現(xiàn)具有生物神經(jīng)元電生理特性的神經(jīng)元網(wǎng)絡的正確性進行驗證。
[Abstract]:Neuron is the basic unit of nervous system, whose main function is to receive, organize and transmit neural information. Synapse is an important structure for the transmission of information between neurons and neurons. The conduction and transmission of nerve impulses is an important aspect of studying the function of nervous system. In this paper, the neuronal network composed of neurons and chemical synapses is mainly used. The Hodkgin-Huxley model with biological neuron electrophysiological characteristics was used as the mathematical model of neurons. Using the excited Rabinovich model as the synaptic mathematical model, The simulation and hardware implementation of regular neuronal chain network and neuronal ring network are carried out, including the following contents: 1) the basic and mathematical model of neuron network. The basic knowledge of neuron and synaptic connection is mainly introduced. The relationship between neural circuits and small neural networks is described in detail. The generation and propagation of nerve signals in neural networks and the classification of neuronal cell membrane potentials are explained. The main modeling methods are summarized. The neuronal model of HH and the synaptic model of Rabinovich were used to simulate and simulate the neural network. The divergence neuron network composed of HH neuron model and Rabinovich synaptic model was studied. The effect of synaptic coupling intensity on the divergence of nerve signal and the effect of aggregation on action potential of neurons were studied. The neuronal chain network and the neuronal loop network were stimulated by different stimulation currents to explore the transmission mechanism of the nerve signal in the neuron network under different stimuli. The consistency of DSP Builder and simulink software simulation is verified. The hardware implementation of the neuronal network is verified. Using FPGA(Field Programmable Gate array, the neuronal chain network and neural network of HH neuron model and Rabinovich synaptic model are made up of HH neuron model and Rabinovich synaptic model by using FPGA(Field Programmable Gate array (FieldProgrammable Gate Array). According to the simulation description of the neural network, Using QUARTUS 鈪,
本文編號:1531291
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1531291.html
教材專著