離子束共濺射SiGe納米島的演變行為及二次生長(zhǎng)機(jī)制研究
發(fā)布時(shí)間:2018-01-16 14:39
本文關(guān)鍵詞:離子束共濺射SiGe納米島的演變行為及二次生長(zhǎng)機(jī)制研究 出處:《云南大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: SiGe納米島 共濺射 生長(zhǎng)機(jī)制 表面原子遷移 表面能
【摘要】:半導(dǎo)體納米島(Ge、InAs)由于具有三維限制效應(yīng)、庫(kù)倫阻塞效應(yīng)、聲子瓶頸效應(yīng)等獨(dú)特的性質(zhì)在高效光電子與微電子器件領(lǐng)域有著非常重要的應(yīng)用。對(duì)于IV族半導(dǎo)體材料,在Si基襯底上通過(guò)Stranski-Krastanov(S-K)模式自組裝生長(zhǎng)的SiGe納米島由于可直接與傳統(tǒng)成熟的硅基CMOS讀出電路集成的優(yōu)勢(shì)使得其具有較大的研究意義,目前已成為學(xué)術(shù)研究的熱點(diǎn)之一。 研究微晶硅(μc-Si)上SiGe納米島的共濺射生長(zhǎng)有助于了解不同結(jié)晶性Si緩沖層上SiGe納米島的生長(zhǎng)演變機(jī)制,同時(shí)μc-Si材料與紅外Ge材料的結(jié)合有助于新型微晶器件的開發(fā)。原子力顯微鏡(AFM)測(cè)試結(jié)果表明:在700℃時(shí),共濺射的SiGe納米島呈現(xiàn)雙模分布,75%的納米島為短島(h3nm),25%的納米島為高島(3h6nm)。在750℃時(shí),共濺射的SiGe納米島呈現(xiàn)多模分布,納米島的尺寸變大,均勻性有所提高。Raman光譜圖顯示:在700℃時(shí),Si緩沖層呈現(xiàn)微晶態(tài),峰位位于381cm-1的振動(dòng)峰來(lái)自于覆蓋在μc-Si緩沖層的非晶硅(a-Si)區(qū)上的非晶硅鍺(a-SiGe)的Si-Ge振動(dòng)峰,而位于395cm-1的振動(dòng)峰來(lái)自于μc-Si緩沖層的結(jié)晶硅(c-Si)區(qū)上的SiGe納米島的Si-Ge振動(dòng)峰。在750℃時(shí),Si緩沖層呈現(xiàn)結(jié)晶態(tài),并未發(fā)現(xiàn)來(lái)自于a-SiGe的Si-Ge振動(dòng)峰,由此可見在μc-Si上共濺射SiGe后表面呈現(xiàn)一種混相結(jié)構(gòu),即包含a-SiGe和SiGe納米島兩種不同相的材料。 在共濺射SiGe層的基礎(chǔ)上,我們?cè)僭谄渖蠟R射不同厚度的Ge層,主要研究μc-Si上SiGe納米島的二次生長(zhǎng)行為及表面原子的遷移機(jī)制,從而為微晶器件的制備提供新的思路。研究表明:二次生長(zhǎng)的納米島在700℃呈現(xiàn)優(yōu)先生長(zhǎng)模式,即沉積的Ge原子優(yōu)先在原先共濺射的高島聚集形成超級(jí)島。另一方面,在二次生長(zhǎng)后有一類底寬較窄、高度較高的納米島出現(xiàn),這是基于Ge和Si之間4.2%的晶格失配而形成的新的納米島。在730℃時(shí),納米島的二次生長(zhǎng)呈現(xiàn)Ostwald熟化模式,大部分的納米島在沉積Ge后共同生長(zhǎng),呈現(xiàn)粗化趨勢(shì),并出現(xiàn)大島兼并小島的現(xiàn)象,一部分納米島的體積、高寬比縮小。在700℃時(shí),隨著Ge沉積量的增加,共濺射SiGe層上的a-SiGe逐漸消失,這是由于a-SiGe中的原子由于表面化學(xué)勢(shì)差和熱擴(kuò)散行為逐漸遷移到納米島中,最終形成互混更加嚴(yán)重的SiGe合金納米島。而在730℃時(shí),由于不存在a-SiGe,因此其Si-Ge互混機(jī)制就是Si原子從Si緩沖層通過(guò)熱擴(kuò)散向上遷移到納米島中,從而導(dǎo)致納米島中的Ge組分下降。 在二次生長(zhǎng)后,優(yōu)先生長(zhǎng)的超級(jí)島的高寬比比熟化生長(zhǎng)的超級(jí)島的高寬比大,這是由于熟化生長(zhǎng)的納米島Si-Ge互混較為嚴(yán)重,從而導(dǎo)致高寬比較低。另一方面,由于700℃時(shí)Si緩沖層為混相狀態(tài),a-Si的表面能(1.05±0.14N/m)比Ge的表面能(~0.75N/m)大但是比c-Si的表面能(~1.4N/m)小,在沉積Ge前期,Ge率先在c-Si上成核,隨著Ge沉積量的增加,當(dāng)納米島越過(guò)結(jié)晶區(qū)跨越到非晶區(qū)時(shí),由于Ge較難在a-Si上浸潤(rùn),因此納米島在橫向方向上的生長(zhǎng)受到了限制,使得納米島的高寬比有所提高。
[Abstract]:The semiconductor nano island (Ge, InAs) with three-dimensional confinement effect, Kulun blocking effect, the unique nature of the phonon bottleneck effect has a very important application in the field of optoelectronic and microelectronic devices. For efficient IV semiconductor material in Si substrate by Stranski-Krastanov (S-K) model of the self-assembled growth of nano island due to SiGe can be directly with the traditional mature silicon CMOS readout integrated circuit which has the advantages of larger significance, has become one of the hot topic in academic research.
Study on microcrystalline silicon (c-Si) on SiGe co sputtering nano island growth helps to understand the different crystallization of Si buffer layer on SiGe nano island growth evolution mechanism, combined with c-Si materials and infrared Ge materials can help development of new ceramic devices. Atomic force microscopy (AFM) test results showed that: at 700 DEG C, SiGe nano island co sputtering showed bimodal distribution, 75% nano island short Island (h3nm), 25% nano island High Island (3h6nm). At 750 DEG C, SiGe nano island co sputtering showed multimodal distribution, nano island size, uniformity increased.Raman the spectra showed that at 700 DEG C, Si buffer layer showed a micro crystalline, vibration peak position at 381cm-1 from the cover of amorphous silicon in the c-Si buffer layer (a-Si) amorphous silicon germanium (a-SiGe) on the Si-Ge vibration peaks, and vibration peaks in 395cm-1 from the c-Si buffer the crystalline silicon layer (c-Si) Si-Ge vibration peaks of SiGe nano island on. At 750 DEG C, Si buffer layer is crystalline, did not find the Si-Ge vibration peaks from a-SiGe, thus it can be seen in the c-Si on the SiGe surface after CO sputtering showed a mixed phase structure, which includes a-SiGe and SiGe nano island two different phase materials.
Based on the co sputtering of SiGe layer, we then in the sputtered Ge layer with different thickness, migration mechanism main research c-Si SiGe nano island two growth behavior and surface atoms, and ceramics fabrication and provide a new way of thinking. The research showed that: two the growth of nano island is preferred the growth pattern of 700 degrees, which deposited Ge atoms preferentially in the high island was originally co sputtering together to form a super island. On the other hand, in the two growth after a bottom width is narrow, high nano island, which is 4.2% between Ge and Si based on lattice mismatch form the new nano island. At 730 DEG C, two nano island growth and Ostwald ripening model, most of the growth in the co deposition of Ge nano island, showing coarsening trend, and the emergence of big mergers island phenomenon, part of the nano island volume, the ratio of height to width narrowing. At 700 DEG C, with Ge The increase of deposition, a-SiGe co sputtering SiGe layer gradually disappeared, this is because the a-SiGe atoms in the surface of the chemical potential difference and thermal diffusion behavior gradually migrated to the nano island, and ultimately the formation of mixed SiGe alloy nano island is more serious. But at 730 DEG C, since there is no a-SiGe, so the Si-Ge mixed mechanism is Si atoms from the Si buffer layer by thermal diffusion to migrate to the nano island, resulting in Ge group of nano island decreased.
In the two growth after the preferential growth of super super island island wide Bibi high growth of the aging high aspect ratio, which is due to the growth of Si-Ge curing nano island mixed is more serious, which leads to high width is relatively low. On the other hand, due to 700 degrees Si buffer layer is a mixed phase state, a-Si the surface energy of (1.05 + 0.14N/m) than the surface energy of Ge (~ 0.75N/m) but than the surface energy of c-Si (~ 1.4N/m), in the early deposition of Ge, Ge took the lead in c-Si nucleation, with the increase of the Ge deposition, when the nano island across the crystalline region across the amorphous region, due to Ge difficult to infiltrate in a-Si, so nano island in the transverse direction of the growth is limited, the high aspect ratio nano island is improved.
【學(xué)位授予單位】:云南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN304
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 王光偉;茹國(guó)平;張建民;曹繼華;李炳宗;;濺射SiGe薄膜及其等時(shí)等溫退火效應(yīng)[J];半導(dǎo)體學(xué)報(bào);2006年05期
2 張學(xué)貴;王茺;魯植全;楊杰;李亮;楊宇;;離子束濺射自組裝Ge/Si量子點(diǎn)生長(zhǎng)的演變[J];物理學(xué)報(bào);2011年09期
3 楊杰;王茺;靳映霞;李亮;陶東平;楊宇;;離子束濺射Ge量子點(diǎn)的應(yīng)變調(diào)制生長(zhǎng)[J];物理學(xué)報(bào);2012年01期
4 徐遠(yuǎn)志;胡亮;吳忠元;;硅外延及其應(yīng)用[J];云南冶金;2013年03期
5 熊飛;楊濤;宋肇寧;楊培志;;Density behaviors of Ge nanodots self-assembled by ion beam sputtering deposition[J];Chinese Physics B;2013年05期
,本文編號(hào):1433559
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1433559.html
最近更新
教材專著