GeOI MOSFET器件模型及表面預(yù)處理技術(shù)研究
本文關(guān)鍵詞:GeOI MOSFET器件模型及表面預(yù)處理技術(shù)研究 出處:《華中科技大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: GeOI MOSFET 閾值電壓 量子效應(yīng) 高k柵介質(zhì) 等離子體處理
【摘要】:為了克服Si基MOSFET的物理極限,滿足下一代CMOS集成電路低功耗,高性能的要求,絕緣層上硅(SOI)結(jié)構(gòu)MOSFET被認(rèn)為是未來具有較大潛力的MOS器件。高k柵介質(zhì)的應(yīng)用也使得高遷移率的Ge取代Si作為MOSFET的溝道材料成為現(xiàn)實(shí)。因此既具有SOI結(jié)構(gòu)優(yōu)勢(shì),又滿足高遷移率的絕緣層上鍺(GeOI)MOSFET引起了廣泛的興趣。然而,高k柵介質(zhì)與Ge溝道之間易形成不穩(wěn)定的GeOx氧化物,引起GeOI MOSFET的性能退化。因此本文主要圍繞Ge/高k柵介質(zhì)的界面特性展開研究,探討了La AlON和La SiON兩種高k柵介質(zhì)與Ge接觸的界面特性以及以HfON為高k柵介質(zhì)時(shí),采用YON鈍化層對(duì)界面特性的影響。兩組實(shí)驗(yàn)均探討了等離子體表面處理對(duì)界面特性的影響。理論方面,研究了GeOI MOSFET閾值電壓和亞閾斜率模型以及量子效應(yīng)對(duì)電特性的影響。理論方面開展的工作有:(1)通過對(duì)溝道區(qū)的二維泊松方程的求解,并且考慮柵電極與源漏區(qū)表面產(chǎn)生的所有邊緣電容對(duì)溝道電勢(shì)的影響建立了閾值電壓和亞閾斜率模型;诖四P,研究了邊緣電容對(duì)閾值電壓和亞閾斜率的影響;(2)采用密度梯度模型研究了量子效應(yīng)對(duì)亞閾斜率,漏致勢(shì)壘降低(DIBL)效應(yīng),閾值電壓和通斷態(tài)電流的影響。仿真結(jié)果表明,量子效應(yīng)對(duì)前柵電學(xué)控制能力產(chǎn)生影響,使DIBL效應(yīng)增強(qiáng),閾值電壓增大,通斷態(tài)電流減小。實(shí)驗(yàn)方面開展的工作有:(1)研究不同的高k柵介質(zhì)La AlON和La Si ON以及在濺射高k柵介質(zhì)之前的不同的等離子體處理氣體(N2,NH3)對(duì)Ge MOS電容界面特性的影響。實(shí)驗(yàn)研究表明,NH3等離子體處理并濺射La AlON高k柵介質(zhì)的Ge MOS電容有最好的界面特性;(2)以HfON為高k柵介質(zhì),研究YON鈍化層以及濺射YON鈍化層后等離子體處理對(duì)界面特性的影響。結(jié)果表明,濺射YON鈍化層的樣品比沒有鈍化層的好,既濺射YON鈍化層又進(jìn)行等離子體處理的樣品有最好的界面特性。
[Abstract]:In order to overcome the physical limits of MOSFET Si based, to meet the next generation of CMOS integrated circuits with low power consumption, high performance requirements of silicon on insulator (SOI) structure of MOSFET is considered to be the future MOS devices have great potential. The application of high k gate dielectric has a high mobility of Ge to replace Si as the channel material MOSFET to become a reality. So it has SOI structure advantages, but also meet the insulation layer of germanium high mobility MOSFET (GeOI) has attracted wide interest. However, GeOx oxide unstable easily formed between high k gate dielectric and Ge channel, causing performance degradation of GeOI MOSFET. This paper mainly focuses on the interface characteristics around the Ge/ high k gate dielectric, discusses the interface properties of La AlON and La SiON two medium and Ge high k gate contact and HfON high k gate dielectric, the effects of YON passivation layer on interface characteristics. Two sets of experiments were discussed at the surface of the plasma The effect on interfacial properties. In theory, the effect of GeOI MOSFET threshold voltage and sub threshold slope model and quantum effects on the electrical characteristics. The theory research work are: (1) by solving the two-dimensional Poisson equation of the channel region, all edge capacitance and consider the gate electrode and the source region the surface leakage of the channel potential established slope threshold and sub threshold voltage model. Based on this model, studied the effect of capacitance on the edge slope threshold and sub threshold voltage; (2) to study the quantum effects on the subthreshold slope by density gradient model, drain induced barrier lowering (DIBL) effect, effect of threshold voltage and the on-off state current. The simulation results show that the quantum effects of front gate electrical control ability, the DIBL effect, the threshold voltage increases, the on-off state current decreases. The contents are as follows: (1) of different K La AlON and La Si gate dielectric and ON in different gas plasma treatment before sputtering high k gate dielectric (N2, NH3) effect on the interface properties of Ge MOS capacitor. The experimental results show that Ge MOS and La NH3 plasma sputtering capacitor AlON high k gate dielectric interface characteristics of the best (2;) with HfON high k gate dielectric, YON passivation layer and sputtering YON passivation layer after the effect of plasma treatment on the interfacial properties. The results showed that the sputtered YON passivation layer than samples without the passivation layer, both sputtering YON passivation layer of the plasma treated sample has the best properties of the interface.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN386
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 萬步勇;張小松;馮慶;;非平行板電容器電容的邊緣效應(yīng)研究[J];大學(xué)物理;2012年07期
2 胡愛斌;徐秋霞;;Effects of silicon nitride diffusion barrier on germanium MOS capacitors with HfON gate dielectrics[J];半導(dǎo)體學(xué)報(bào);2009年10期
3 龍非池;王慧;;基于Schwarz-Christoffel變換的平板電容器電場(chǎng)電荷分布仿真[J];物理與工程;2007年06期
4 方圓,張悅,李偉華;薄膜雙柵MOSFET體反型現(xiàn)象的研究[J];微電子學(xué);2005年03期
5 葉暉,李偉華;對(duì)稱薄膜雙柵nMOSFET模型的研究[J];微電子學(xué);2002年06期
6 谷長壽,張穎,曹力生;平行板電容器邊緣效應(yīng)的研究[J];遼寧工學(xué)院學(xué)報(bào);1994年03期
相關(guān)博士學(xué)位論文 前3條
1 曹磊;新型納米SOI MOS器件結(jié)構(gòu)分析與可靠性研究[D];西安電子科技大學(xué);2013年
2 張雪鋒;高k柵介質(zhì)Si/Ge MOSFET遷移率模型及制備工藝研究[D];華中科技大學(xué);2008年
3 鄒曉;高κ柵介質(zhì)Ge基MOS器件模型及制備工藝研究[D];華中科技大學(xué);2007年
,本文編號(hào):1375474
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1375474.html