一種風電功率混沌時間序列概率區(qū)間簡易預測模型
發(fā)布時間:2019-07-08 17:32
【摘要】:本文基于極限學習機構建了一種簡易模型以直接輸出風電功率概率區(qū)間.同時,為優(yōu)化模型訓練過程中輸出區(qū)間的性能,本文基于對數(shù)據(jù)集區(qū)間帶偏差信息的分析構建了一種新的優(yōu)化準則,并采用量子細菌覓食優(yōu)化算法以獲取問題的最優(yōu)解,提高模型泛化能力.對比分析兩個風電場在不同置信水平和不同優(yōu)化準則下的概率預測結果,仿真表明本文模型具有更高的可靠性和更窄的區(qū)間帶寬,可為風電并網(wǎng)安全穩(wěn)定運行提供決策支持.
[Abstract]:In this paper, a simple model is established based on the limit learning mechanism to directly output the probability range of wind power. At the same time, in order to optimize the performance of the output interval in the process of model training, a new optimization criterion is constructed based on the analysis of the interval deviation information of the data set, and the quantum bacteria foraging optimization algorithm is used to obtain the optimal solution of the problem and improve the generalization ability of the model. The probability prediction results of two wind farms under different confidence levels and different optimization criteria are compared and analyzed. The simulation results show that the model has higher reliability and narrower interval bandwidth, which can provide decision support for the safe and stable operation of wind power grid connection.
【作者單位】: 華中科技大學水電與數(shù)字化工程學院;西澳大利亞大學電氣電子及計算機學院;
【基金】:國家自然科學基金(批準號:51379081) 湖北省自然科學基金(批準號:2011CDA032)資助的課題~~
【分類號】:TM614
[Abstract]:In this paper, a simple model is established based on the limit learning mechanism to directly output the probability range of wind power. At the same time, in order to optimize the performance of the output interval in the process of model training, a new optimization criterion is constructed based on the analysis of the interval deviation information of the data set, and the quantum bacteria foraging optimization algorithm is used to obtain the optimal solution of the problem and improve the generalization ability of the model. The probability prediction results of two wind farms under different confidence levels and different optimization criteria are compared and analyzed. The simulation results show that the model has higher reliability and narrower interval bandwidth, which can provide decision support for the safe and stable operation of wind power grid connection.
【作者單位】: 華中科技大學水電與數(shù)字化工程學院;西澳大利亞大學電氣電子及計算機學院;
【基金】:國家自然科學基金(批準號:51379081) 湖北省自然科學基金(批準號:2011CDA032)資助的課題~~
【分類號】:TM614
【參考文獻】
相關期刊論文 前9條
1 李智;韓學山;楊明;鐘世民;;基于分位點回歸的風電功率波動區(qū)間分析[J];電力系統(tǒng)自動化;2011年03期
2 方偉;孫俊;謝振平;須文波;;量子粒子群優(yōu)化算法的收斂性分析及控制參數(shù)研究[J];物理學報;2010年06期
3 高光勇;蔣國平;;采用優(yōu)化極限學習機的多變量混沌時間序列預測[J];物理學報;2012年04期
4 周松林;茆美琴;蘇建徽;;風電功率短期預測及非參數(shù)區(qū)間估計[J];中國電機工程學報;2011年25期
5 張學清;梁軍;;風電功率時間序列混沌特性分析及預測模型研究[J];物理學報;2012年19期
6 吳小珊;張步涵;袁小明;李高望;羅鋼;周楊;;求解含風電場的電力系統(tǒng)機組組合問題的改進量子離散粒子群優(yōu)化方法[J];中國電機工程學報;2013年04期
7 張學清;梁軍;;基于EEMD-近似熵和儲備池的風電功率混沌時間序列預測模型[J];物理學報;2013年05期
8 王新迎;韓敏;;基于極端學習機的多變量混沌時間序列預測[J];物理學報;2012年08期
9 劉德偉;郭劍波;黃越輝;王偉勝;;基于風電功率概率預測和運行風險約束的含風電場電力系統(tǒng)動態(tài)經濟調度[J];中國電機工程學報;2013年16期
【共引文獻】
相關期刊論文 前10條
1 張朝龍;江巨浪;李彥梅;陳世軍;gだ,
本文編號:2511757
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2511757.html
教材專著