變壓器振動法故障診斷技術(shù)的研究
[Abstract]:Power transformer is a kind of static electrical equipment, which is used to change a certain value of AC voltage into another or several kinds of voltage with the same frequency. It is the key equipment in the power system, and its safe and reliable operation is related to the safe operation of the whole power grid. In recent years, the method of fault diagnosis of transformer based on vibration signal has begun to take shape. In this paper, the feature quantity is further extracted by analyzing the vibration signal transmitted by sensor, and the working condition of transformer is evaluated according to the extracted feature quantity. A large number of experimental results show that when the transformer fails, the vibration signal is not in a stationary state, but in a non-stationary state. In this paper, wavelet analysis method is used to analyze the non-stationary signal, but there is a defect in the fault diagnosis method of transformer vibration signal based on wavelet analysis, that is, it has a prerequisite. It is considered that the coefficient of wavelet decomposition accords with Gaussian distribution, which is not the case in practice, and there is a compression characteristic of wavelet transform. Most of the energy only exists in a small part of wavelet coefficients, which is obviously different from the characteristics of Gaussian distribution. In this paper, the mechanism of transformer fault is described, the analysis method of wavelet transform is put forward, and the theoretical basic knowledge of wavelet transform is summarized. Then, the vibration model of transformer is established and the signal is divided into several appropriate fault types. In the fault diagnosis, the energy spectrum fault analysis method is used to diagnose the signal. Then the generalized Gaussian model in wavelet domain is established, and the signal is fitted according to the probability density function of the generalized Gaussian distribution. The parameters of the generalized Gaussian distribution of the wavelet coefficient are extracted as the characteristic quantity to carry on the fault diagnosis to the signal, and the signal is classified by the support vector machine. Then, when considering the correlation of wavelet coefficients, the energy spectrum and the hidden Markov model in wavelet domain are combined to diagnose the fault of the signal. Finally, wavelet transform and corresponding energy calculation are realized on VC, and fault signal diagnosis is realized on VC.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉敬東;;機械故障診斷的SL-ISOMAP算法及應(yīng)用初探[J];河南科技;2014年01期
2 閆晨光;張保會;郝治國;晁光;王龍;付科源;梁棟;;電力變壓器油箱內(nèi)部故障壓力特征建模及仿真[J];中國電機工程學(xué)報;2014年01期
3 王豐華;張君;江秀臣;;變壓器振動特性測試平臺的設(shè)計與實現(xiàn)[J];實驗室研究與探索;2013年11期
4 尚海昆;苑津莎;王瑜;靳松;;平移不變小波跡消噪方法在局部放電檢測中的應(yīng)用[J];電工技術(shù)學(xué)報;2013年10期
5 蘇峰;平殿發(fā);簡濤;;拖尾噪聲中基于WVD-Hough變換的LFM信號檢測算法[J];艦船電子工程;2013年10期
6 畢小玉;田慕琴;宋建成;吝伶艷;鄭麗君;李傳揚;;主通風(fēng)機電動機絕緣狀態(tài)監(jiān)測及故障診斷方法研究[J];工礦自動化;2013年09期
7 馬宏忠;耿志慧;陳楷;王春寧;李凱;李勇;;基于振動的電力變壓器繞組變形故障診斷新方法[J];電力系統(tǒng)自動化;2013年08期
8 陶新民;張冬雪;郝思媛;付丹丹;;基于譜聚類欠取樣的不均衡數(shù)據(jù)SVM分類算法[J];控制與決策;2012年12期
9 劉夢娜;彭發(fā)東;柯春俊;孟源源;;變壓器繞組變形故障的診斷分析[J];廣東電力;2012年11期
10 曹維時;張春慶;王金星;劉雙喜;許興鎮(zhèn);;離散小波變換和BP神經(jīng)網(wǎng)絡(luò)識別玉米種子純度(英文)[J];農(nóng)業(yè)工程學(xué)報;2012年S2期
相關(guān)博士學(xué)位論文 前1條
1 吳書有;基于振動信號分析方法的電力變壓器狀態(tài)監(jiān)測與故障診斷研究[D];中國科學(xué)技術(shù)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前4條
1 鄧龍君;高壓開關(guān)柜實時監(jiān)測系統(tǒng)研究[D];集美大學(xué);2013年
2 陳靜;基于獨立分量分析和支持向量機方法的操作員功能狀態(tài)分類[D];華東理工大學(xué);2011年
3 徐志;基于振動法的變壓器在線監(jiān)測研究[D];重慶大學(xué);2010年
4 劉欣;基于小波變換的電力變壓器故障診斷系統(tǒng)的研究[D];華中科技大學(xué);2006年
,本文編號:2509657
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2509657.html