模塊化多電平變換器控制系統(tǒng)設計及實驗研究
[Abstract]:From the point of view of sustainable development strategy, the new energy power generation technology, which is dominated by solar energy, wind energy and other renewable energy, has become a hot research topic. With the development of existing technology, flexible DC transmission technology based on voltage source modular multilevel converter has become an inevitable choice to solve the problem of distributed power supply connected to the grid. The control system is the brain and nerve of the whole flexible HVDC system, so this paper takes the control system of modular multilevel converter (MMC) as the research core, and studies its control strategy with experiments. Based on the existing examples of MMC flexible HVDC, this paper analyzes the research status of MMC control system, and summarizes the typical control system structure of MMC control technology. the control system of flexible HVDC mainly includes system level control, converter station level control and converter valve level control. Aiming at the typical half-bridge submodule MMC topology, the working principle of back-to-back MMC and its sub-modules, as well as the operation of four quadrants are analyzed, and its simplified equivalent model and MMC upper bridge arm small signal model are established to facilitate the design of subsequent control strategy. On the basis of the existing research on the capacitance voltage balance control method of the sub-module, this paper proposes a MMC comprehensive control strategy based on the bridge arm current direct control, and applies it to the back-to-back MMC system composed of rectifier side and inverter side. The rectifier side is responsible for DC bus voltage stability control, and the inverter side is responsible for grid-connected control. Taking the control block diagram of the current inner loop and the design of the regulator as an example, the design process of the MMC control system is introduced in detail, and a feedforward scheme of the active current is also proposed for the rectifier MMC, which increases the dynamic response speed of the active current and improves the rapidity and stability of the system. In order to carry out the research of MMC experiment, a set of three-phase back-to-back MMC experimental platform with four sub-modules is developed in this paper. The control system is composed of three levels of control: main controller, auxiliary controller and sub-module controller. The main controller adopts TI's latest dual-core chip F28M35, which integrates ARM and DSP. The M3 core is mainly used to realize the communication with the upper computer, and the working state information of MMC is sent to the upper computer for display in time, and the instructions of the upper computer are received at the same time. The C28 core is mainly used to realize the core control algorithm and communication with FPGA. FPGA, as an auxiliary controller, mainly realizes carrier phase shift and data conversion, generates the PWM signal of each sub-module, serially receives the capacitance voltage feedback value of the sub-module controller, and converts it into 16 bits of data for DSP call. In the debugging process of the experimental platform, this paper first uses PSIM simulation to verify the effectiveness of the MMC integrated control strategy; then uses this control strategy to debug the hardware-in-the-loop simulation system, and uses the hardware-in-the-loop simulation system that has been debugged to debug the control system; finally, the debugged control system is used to debug the strong electric main circuit, so that the whole experimental platform is debugged successfully. A series of experimental studies of modular multilevel converters can be carried out by using the whole experimental platform, which provides a good experimental platform for the research of control strategy. The experimental results show the practicability of the experimental platform and the effectiveness of the MMC integrated control strategy.
【學位授予單位】:山東大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TM46
【相似文獻】
相關期刊論文 前10條
1 梅業(yè)偉;劉慧娟;邱瑞昌;程強;;基于多電平逆變器通用數(shù)字控制平臺的研究[J];機械與電子;2009年04期
2 江友華;林學龍;曹以龍;龔幼民;;高壓大功率變換器拓撲結構的演化及分析和比較[J];電源技術應用;2004年03期
3 寧靜;賀昱曜;;多電平逆變器準最優(yōu)脈寬調(diào)制方法[J];西北工業(yè)大學學報;2006年02期
4 陳阿蓮;何湘寧;胡磊;;組合型多電平變換器拓撲的研究(英文)[J];中國電機工程學報;2006年14期
5 桂紅云;姚文熙;呂征宇;;多電平變換器的拓撲結構和控制策略[J];電源技術應用;2004年08期
6 李永東;高躍;;多電平變換器PWM控制技術發(fā)展現(xiàn)狀(續(xù))[J];電氣技術;2006年05期
7 王小峰;鄧焰;何湘寧;;基于混和箝位技術的四橋臂多電平變換器的研究[J];中國電機工程學報;2007年13期
8 劉紅良;李利娟;朱建林;;多電平矩陣變換器系統(tǒng)的數(shù)學模型[J];吉首大學學報(自然科學版);2007年04期
9 張艷莉;居榮;費萬民;呂征宇;;混合二極管箝位多電平變換器的拓撲結構研究[J];電力自動化設備;2005年12期
10 陳阿蓮;王瑋譽;董圣英;張承慧;;光伏發(fā)電系統(tǒng)中的多電平變換技術[J];電力電子技術;2010年06期
相關會議論文 前5條
1 李承;石丹;郭勇;;基于單周控制的級聯(lián)多電平變換器研究[A];武漢(南方九省)電工理論學會第22屆學術年會、河南省電工技術學會年會論文集[C];2010年
2 蔚泉清;陳增祿;趙文武;;一種新型多電平跟蹤控制方法研究[A];2008中國電工技術學會電力電子學會第十一屆學術年會論文摘要集[C];2008年
3 陳世杰;王武斌;呂征宇;;開關功率放大器拓撲及控制方案選擇[A];浙江省電源學會第九屆學術年會論文集[C];2004年
4 王琛琛;李永東;高躍;;新型多電平拓撲及其仿真研究[A];2008中國電工技術學會電力電子學會第十一屆學術年會論文摘要集[C];2008年
5 李永東;;高性能大容量交流電機調(diào)速節(jié)能技術——現(xiàn)狀及展望[A];第九屆全國電技術節(jié)能學術會議論文集[C];2007年
相關博士學位論文 前4條
1 韓金剛;基于不對稱結構的新型多電平變換器研究[D];上海海事大學;2007年
2 陳權;電壓型多電平變換器若干關鍵技術研究[D];合肥工業(yè)大學;2007年
3 楊曉峰;模塊組合多電平變換器(MMC)研究[D];北京交通大學;2012年
4 荊鵬輝;高頻隔離三電平雙向DC/DC變換器的研究[D];中國礦業(yè)大學(北京);2013年
相關碩士學位論文 前10條
1 王曉鵬;模塊組合多電平變換器控制系統(tǒng)研制[D];北京交通大學;2011年
2 熊燾;基于模塊組合多電平變換器的高壓直流輸電系統(tǒng)研究[D];北京交通大學;2012年
3 常非;多電平變換器在同相供電中的應用研究[D];西南交通大學;2013年
4 牛得存;并聯(lián)模塊化多電平變換器控制方法研究[D];山東大學;2014年
5 孫浩;模塊組合多電平變換器(MMC)的控制策略研究[D];北京交通大學;2010年
6 孫常鵬;模塊化多電平變換器控制系統(tǒng)設計及實驗研究[D];山東大學;2014年
7 廖其艷;基于MMC的輕型直流輸電系統(tǒng)控制策略研究[D];安徽理工大學;2012年
8 王鳳榮;模塊化多電平變換器建模與模擬仿真技術研究[D];山東大學;2014年
9 范文寶;基于模塊組合多電平變換器(MMC)的STATCOM控制策略研究[D];北京交通大學;2011年
10 李帥;基于MMC拓撲的DSTAT-COM控制策略研究[D];太原科技大學;2014年
,本文編號:2509619
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2509619.html