無鉛鐵電陶瓷的晶格振動及電子躍遷特性研究
[Abstract]:The lead-free ferroelectric ceramic material is one of the hot spots of the present ferroelectric ceramic material due to its excellent ferroelectric property and the friendliness of the environment. At present, the research of lead-free ferroelectric materials is mainly focused on:1) Perovskite-type titanate-based ferroelectric materials, such as titanium, BaTiO3 (BT), SrTiO3 (ST) of titanium, Sr1-x (BST), and the like. Such as, for example, a lithium titanate Bi4Ti3O12, a ferroic acid, or a SrBi2Nb209 (SBNO), and the like. wherein the BST, the SBN and the SBNO and the doped ferroelectric material thereof have the characteristics of higher resistivity, good anti-fatigue property, high dielectric constant and the like, And has a great application prospect in the fields of non-refrigeration infrared focal plane arrays and ferroelectric storage. The preparation, performance and modification of lead-free ferroelectric ceramics have become a hot spot of the ferroelectric ceramic material. The ideal operating temperature range of the pyroelectric detector should be in the vicinity of the Curie temperature (Tc) of the pyroelectric material according to the analysis of the working principle of the ferroelectric material for the pyroelectric detector. Therefore, the phase-change temperature point of the ferroelectric material is reduced as a necessary condition for the development of the next generation pyroelectric detector. In this paper, the synthesis of lead-free ferroelectric oxide and its rare-earth element-doped ferroelectric materials, such as Ba0. 4Sr0.6-xMnxTiO3 (BSMT), SrxBa1-xNb2O6 (SBN) and SrBi2Nb2-xNdxO9 (SBN), are studied by means of spectral measurement. The main work and innovation points of this paper include the following: 1. Raman spectrum, far infrared spectrum and elliptically polarized light in the temperature range of 80-873 K of ferroelectric ceramic SBN with layered structure are studied. The electron structure, the optical phonon mode and the curie temperature of the doping of the element Nd in detail are discussed in detail. In response, the research on SrBi2Nb2-xNdxO9 (0-x-0.20) prepared by the conventional solid-state sintering reaction shows that (a) the frequency of the A1g[Nb] acoustic submode produced by the Nb06 oxygen octahedron is reduced with the increase of the Nd component as the temperature increases with the increase of the Nd component, In addition, the peak position of the A1g[Nb] acoustic submode and its intensity show no difference in the ferroelectric phase of the SBN to the phase transition temperature of the paramagnetic phase. and (b) fitting the far infrared reflection spectrum of the SBN in the range of 350-1500 cm-1 by a Lorentz oscillator model, Submode. The Nb06 tilt and symmetric draw mode as the Nd component increases due to the lattice distortion due to the increase in the Nd component and the change behavior of the phonon mode of the raman activity is The high-frequency dielectric constant obtained by fitting is between 4.55 and 4.80, and the far-infrared dielectric function of the Nd component is shown. (c) The two band transition energies of SBN (the transition energy of 3.70 and 4.78 eV at 0 擄 and 3.70 and 4.78 eV at 0 擄, respectively) and the corresponding energy range were obtained by using the Taurc-Lorenz dispersion model to obtain the elliptical polarization spectrum at the temperature of 0 擄 to 500 擄. An electrical function. When a phase change temperature near the ferroelectric to a paraelectric, there is an anomaly in the transition energy between the two bands as the temperature increases. The change of the band-to-band transition is due to the hybridization of the Bi6s and the O2p orbitals during the lattice distortion. Finally, we found that, after the introduction of Nd ions in the Bi202 layer, we obtained the inclination angle of the Nb06 oxygen octahedron from the bond angle of Nb-O1-Nb, and the degree of distortion of the Nb06 oxygen octahedron was reduced from 9.7 擄 to 5.5 擄, and finally the Curie temperature of the SBN was reduced with the Nd component. increases from 710 to 5 50 K. This provides a family for research and development of the next generation of pyroelectric infrared detector materials The optical constants and the forbidden band width of the perovskite type ferroelectric ceramic BSMT in the range of ultraviolet to far infrared photon energy are studied, and the doping of Mn to the infrared and Raman phonon modes and the electron are discussed in detail. The results of the study on the structure of Bao. 4Sr0.6-xMnxTiO3 (0.01% x {0.10) prepared by the traditional solid-state sintering reaction show that, in the range of 1% to 10% of the Mn doping range, the BSMT is a single perovskite phase and does not (b) the frequency of the acoustic submode A1 (LO3)/ E (LO) of the Raman activity due to the distortion of the Ti06 oxygen octahedron with the increase of the Mn component Blue shift of 8 cm-1. The frequency of the T04 acoustic submode of the infrared activity is reduced from 532 to 520 cm-1. (c) in the range of 1.0 to 3.0 eV, the dielectric function of BSMT is 2 with the Mn group. the increase in the fraction increases. the optical forbidden band width (e) is between 3.40 and 3.65 ev, and it is found that the eg decreases with the increase of the mn component, it is noted that after the mn is increased to 10%, both the bv2 and the eg are An abnormal change. The study is a potential application of the BSMT ferroelectric ceramics to a new type of photoelectric multi-function device The low-frequency phonon modes of the Raman and infrared activity of the tungsten-bronze ferroelectric ceramic SBN are studied in this paper. With the change of the Sr component and the temperature, the soft-mode of the SBN is observed to disappear in the vicinity of the phase-change point, and the Curie temperature of the SBN is obtained. The relationship of the degree with the composition is discussed. SrxBa1-xNb206 (0.30-x-0.50) ferroelectric is investigated by means of temperature-varying Raman scattering and Fourier infrared spectroscopy. The abnormal lattice vibration characteristics of the ceramic. a) the frequency of the infrared active T2u. The frequency of the phonon mode increases with the increase of the Sr component And the red shift is about 2 cm-1. The reason is that the larger Ba is off. and (b) the frequency of the Alg acoustic submode is shifted to the low frequency direction as the temperature is increased, and the intensity is obviously In the vicinity of the Curie temperature point, the frequency of the A1g acoustic submode and the half-height width change with the temperature There was an abnormal change in the slope of the chemical. The SBN ceramic The soft modulus is about 42 cm-1. With the increase of the temperature, the frequency of the soft die is The relationship between the Curie temperature and the Sr component of SBN is obtained based on the change of temperature.
【學(xué)位授予單位】:華東師范大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TM221
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 錢蓉,張穎,黃郁仲;PZT 鐵電陶瓷細(xì)觀結(jié)構(gòu)及其力學(xué)行為分析[J];西南交通大學(xué)學(xué)報(bào)(自然科學(xué)版);1998年01期
2 李長鵬,王矜奉,王勇軍,陳洪存;摻雜的PNL-PFS-PZT鐵電陶瓷性能研究[J];電子元件與材料;2000年06期
3 賀元吉,張亞洲,李傳臚;爆電換能的理論分析[J];國防科技大學(xué)學(xué)報(bào);2000年S1期
4 喬利杰;;鐵電陶瓷在力-電和化學(xué)環(huán)境中的耦合效應(yīng)[J];功能材料信息;2007年05期
5 鄧國強(qiáng);鐵電陶瓷電容器的老化常數(shù)確定及使用[J];電子元件與材料;1992年05期
6 袁戰(zhàn)恒,姚熹;鐵電陶瓷的有效介電系數(shù)及其調(diào)整原理[J];西安交通大學(xué)學(xué)報(bào);1992年05期
7 吳清仁,奚同庚,文梓蕓;新鐵電陶瓷材料PZT熱物理性能和相變的研究(英文)[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2000年12期
8 申林,肖定全,余萍,朱建國,高道江;(Bi_(4-x),La_x)Ti_3O_(12)鐵電陶瓷性能研究[J];壓電與聲光;2002年03期
9 云斯寧,王曉莉;改進(jìn)的兩步法制備PZN-PT-BT鐵電陶瓷[J];功能材料;2005年05期
10 凌志遠(yuǎn),,劉付德,熊茂仁,陳楷;鐵電陶瓷的極化運(yùn)動學(xué)模型[J];電子學(xué)報(bào);1998年02期
相關(guān)會議論文 前10條
1 李法新;;鐵電陶瓷變形與斷裂實(shí)驗(yàn)研究的最新進(jìn)展[A];中國科協(xié)第235次青年科學(xué)家論壇——極端復(fù)雜測試環(huán)境下實(shí)驗(yàn)力學(xué)的挑戰(zhàn)與應(yīng)對[C];2011年
2 左如忠;桂治輪;李龍土;;鐵電陶瓷和銀鈀漿料的多層共燒動力學(xué)及調(diào)控機(jī)理[A];2000年材料科學(xué)與工程新進(jìn)展(上)——2000年中國材料研討會論文集[C];2000年
3 崔元慶;仲政;;鐵電陶瓷中近矯頑電場驅(qū)動的靜止裂紋附近的大范圍疇變[A];第十五屆全國疲勞與斷裂學(xué)術(shù)會議摘要及論文集[C];2010年
4 姚學(xué)鋒;張振科;鄒林華;金觀昌;;鐵電陶瓷材料損傷與斷裂機(jī)理的實(shí)驗(yàn)研究[A];復(fù)合材料的現(xiàn)狀與發(fā)展——第十一屆全國復(fù)合材料學(xué)術(shù)會議論文集[C];2000年
5 魏曉勇;姚熹;;BaTiO_3基微波介質(zhì)陶瓷介電性能研究[A];第四屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集[C];2001年
6 鄭陽;李志成;劉路;徐永波;;(BaPb)TiO_3鐵電陶瓷的電疲勞現(xiàn)象[A];第四屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集[C];2001年
7 趙堅(jiān)強(qiáng);李龍土;桂治輪;;外加直流電場下Ba_(1-x)Sr_xTiO_3鐵電陶瓷介電性能研究[A];中國硅酸鹽學(xué)會2003年學(xué)術(shù)年會論文摘要集[C];2003年
8 王茂祥;孫彤;孫平;;(Pb_(1-x)Sr_x)TiO_3系鐵電陶瓷的介電溫譜與頻譜特性[A];華東三省一市第三屆真空學(xué)術(shù)交流會論文集[C];2000年
9 孫平;孫彤;;鐵電陶瓷晶?棙(gòu)化技術(shù)[A];華東三省一市第三屆真空學(xué)術(shù)交流會論文集[C];2000年
10 張穎;程璇;錢蓉;;PZT鐵電陶瓷機(jī)電耦合疲勞行為[A];第四屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集[C];2001年
相關(guān)重要報(bào)紙文章 前1條
1 孔明;從球面到平面[N];中國計(jì)算機(jī)報(bào);2000年
相關(guān)博士學(xué)位論文 前10條
1 姜凱;無鉛鐵電陶瓷的晶格振動及電子躍遷特性研究[D];華東師范大學(xué);2014年
2 朱廷;鐵電陶瓷的電致失效力學(xué)[D];清華大學(xué);1999年
3 賀元吉;爆電能源高功率超寬帶脈沖發(fā)生器研究[D];國防科學(xué)技術(shù)大學(xué);2001年
4 高峰;高介弛豫鐵電陶瓷/NiZn鐵氧體疊層低溫共燒行為的研究[D];西北工業(yè)大學(xué);2002年
5 黃平;鍶鉍鈦鐵電陶瓷及薄膜的研究[D];天津大學(xué);2005年
6 嚴(yán)文裔;相變材料的細(xì)觀本構(gòu)研究與相變局部化分析[D];清華大學(xué);1995年
7 張颯;PLZT鐵電陶瓷疇變的原位Raman光譜觀測[D];廈門大學(xué);2006年
8 陳志武;電疲勞過程中PLZT鐵電陶瓷疇變的原位觀測及電疲勞機(jī)理研究[D];廈門大學(xué);2003年
9 吳甲民;低介微波介質(zhì)陶瓷及BST基鐵電陶瓷的凝膠注模制備技術(shù)及其性能研究[D];華中科技大學(xué);2012年
10 張艷飛;多晶材料鐵電熱電性質(zhì)的蒙特卡羅模擬[D];山東大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 錢娟娟;硼族元素?fù)诫s對無鉛鐵電陶瓷介電性能的影響[D];上海師范大學(xué);2010年
2 那文菊;高介BaTiO_3基鐵電陶瓷性能研究[D];西華大學(xué);2011年
3 鄭曉斌;鈦酸鍶鋇鈣基鐵電陶瓷的介電性能研究[D];天津大學(xué);2011年
4 王智珠;多孔鐵電陶瓷PZT95/5沖擊應(yīng)力作用下的去極化與放電響應(yīng)研究[D];蘭州大學(xué);2013年
5 高龍;多孔PZT95/5鐵電陶瓷的制備及低速沖擊載荷下的放電特性研究[D];西南科技大學(xué);2013年
6 潘玲;鈦酸鉍粉體溶膠-凝膠合成及陶瓷的超高壓制備[D];吉林大學(xué);2005年
7 石秀麗;磁通量壓縮發(fā)生器關(guān)鍵技術(shù)研究[D];南京理工大學(xué);2011年
8 余柏威;鋇基鉍層狀鐵電陶瓷鈦酸鉍鋇和鈮酸鉍鋇的摻雜改性與老化研究[D];上海師范大學(xué);2013年
9 張攀;沖擊波加載下PZT95/5鐵電陶瓷的力學(xué)及電學(xué)特性數(shù)值研究[D];蘭州大學(xué);2013年
10 張豐慶;Ca_xSr_(1-x)Bi_4Ti_4O_(15)鐵電陶瓷及薄膜的制備及性能研究[D];山東建筑大學(xué);2007年
本文編號:2495964
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2495964.html