基于智能用電系統(tǒng)的家庭用電策略研究
[Abstract]:In recent years, most of the research on intelligent power consumption technology of advanced measurement system has focused on the terminal equipment of the system, communication technology and its basic functions, but the research on the application of basic functional data is relatively small. Therefore, how to make users use electricity more economically and reasonably according to the price information of power grid companies and their own energy structure has become the development trend of intelligent power technology. The purpose of this paper is to study and design a household power consumption strategy based on intelligent power consumption system. Through this strategy, the working conditions of household electrical equipment can be reasonably adjusted, so that users can achieve the goal of the highest quality of electricity consumption and saving electricity expenditure. Firstly, according to the research situation of advanced measurement system, the architecture of home intelligent power consumption system is designed, and the main station, indoor network, local information management terminal and corresponding communication technology of the system are introduced respectively. Then the household power consumption strategy is studied from the two parts of household power planning and family energy management. Household power planning provides household energy management with the data of power consumption of electrical equipment involved in the planning. The research of household electricity planning is to establish a household electricity planning model based on the user's electricity habit and the time-sharing electricity price information of the power grid company, taking the start-up time of the electrical equipment as the decision variable and the minimum household electricity expenditure as the goal. The establishment of household energy management model is aimed at a new type of household which adopts the combined power supply of municipal power grid and photovoltaic grid-connected power generation. The household energy consumption nodes are divided into indoor temperature energy consumption and hot water heating energy consumption. Battery energy storage and other electrical equipment energy consumption, indoor temperature regulation power, hot water system heating switch, battery charge and discharge power as the control, tracking indoor temperature and hot water temperature requirements, at room temperature, Hot water service quality is the highest and electricity expenditure is saved as the goal. In this paper, the optimization methods based on genetic algorithm are designed for household power planning model and family energy management model, and the constraint conditions for solving the control variables of family energy management model are analyzed, and the corresponding adjustment methods are given. In order to verify the effectiveness of genetic algorithm in solving household power consumption model, the simulation experiments are carried out, and the simulation results show that this method can effectively save the electricity cost of users.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM76
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李莉;基于混合遺傳算法的鉆孔最佳走刀路線的求解[J];排灌機(jī)械;2001年06期
2 唐平,李金伴,張榮標(biāo);基于遺傳算法的泵汽蝕試驗(yàn)數(shù)據(jù)擬合[J];排灌機(jī)械;2002年01期
3 閆永強(qiáng),梁武科;遺傳算法在離心泵葉片優(yōu)化設(shè)計(jì)中的應(yīng)用[J];排灌機(jī)械;2004年02期
4 張濱燕;郝艷莉;;退火遺傳算法及其在一維切割問題上的應(yīng)用[J];新鄉(xiāng)學(xué)院學(xué)報(bào)(自然科學(xué)版);2009年02期
5 徐海;王娜娜;;基于卡爾曼濾波器的機(jī)動(dòng)目標(biāo)跟蹤仿真[J];新鄉(xiāng)學(xué)院學(xué)報(bào)(自然科學(xué)版);2010年01期
6 李小玲;標(biāo)準(zhǔn)遺傳算法的應(yīng)用初探[J];攀枝花學(xué)院學(xué)報(bào);2004年01期
7 危志明;陳琪;;基于遺傳神經(jīng)網(wǎng)絡(luò)的圖書館流通量預(yù)測[J];情報(bào)探索;2009年10期
8 蔣定定,王貴霞;基于遺傳算法的紅外圖像增強(qiáng)研究[J];情報(bào)指揮控制系統(tǒng)與仿真技術(shù);2004年04期
9 趙師;屈洋;劉洪坤;;基于串聯(lián)QFD神經(jīng)網(wǎng)絡(luò)的武器裝備使用需求映射方法[J];指揮控制與仿真;2009年05期
10 李文濤;姜海波;王雪琴;;數(shù)字化炮兵作戰(zhàn)能力評價(jià)[J];指揮控制與仿真;2010年03期
相關(guān)會(huì)議論文 前10條
1 齊繼陽;竺長安;曾議;;基于遺傳禁忌混合搜索算法的設(shè)備布局研究[A];2004“安徽制造業(yè)發(fā)展”博士科技論壇論文集[C];2004年
2 齊文文;趙斌;龍連春;;基于遺傳算法的加筋圓柱殼屈曲承載力優(yōu)化[A];北京力學(xué)會(huì)第18屆學(xué)術(shù)年會(huì)論文集[C];2012年
3 丁婷;崔紅濤;;遺傳算法在智能天線扇區(qū)波束賦形及陣元失效補(bǔ)償中的應(yīng)用[A];經(jīng)濟(jì)策論(上)[C];2011年
4 程遠(yuǎn)林;李茂軍;;基于小生境遺傳算法的配電網(wǎng)電容器優(yōu)化配置[A];第二十六屆中國控制會(huì)議論文集[C];2007年
5 姜明輝;袁緒川;;基于GA優(yōu)化的個(gè)人信用評估SVM模型[A];第二十六屆中國控制會(huì)議論文集[C];2007年
6 張志華;王莉;劉洪;;最大化網(wǎng)絡(luò)廣告收入的投放決策[A];第二十六屆中國控制會(huì)議論文集[C];2007年
7 趙瑞艷;李樹榮;張曉東;苗榮;;基于混合遺傳算法的熱傳導(dǎo)系統(tǒng)最優(yōu)控制問題求解[A];第二十七屆中國控制會(huì)議論文集[C];2008年
8 王清;宋年年;王佳慶;姚菁;;優(yōu)化自抗擾控制器在主汽溫控制系統(tǒng)中的應(yīng)用[A];第二十七屆中國控制會(huì)議論文集[C];2008年
9 康忠健;徐麗;勾松波;金華蓉;李瑞生;;考慮分布電容的神經(jīng)網(wǎng)絡(luò)單相接地故障測距算法[A];第二十七屆中國控制會(huì)議論文集[C];2008年
10 姜封國;;基于小生境技術(shù)的混合遺傳算法[A];第二十九屆中國控制會(huì)議論文集[C];2010年
本文編號(hào):2493607
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2493607.html